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Abstract: The impact of early developmental experience on neurobiological pathways that may
contribute to the association between diet and behavior have not yet been elucidated. The focus of
the current study was to determine whether the impact of prenatal stress (PS) could be mitigated by
a diet that stimulates the same neuroendocrine systems influenced by early stress, using a mouse
model. Behavioral and genetic approaches were used to assess how a Western-pattern diet (WPD)
interacts with PS and sex to impact the expression of anxiety-like behavior in an open-field arena, as
well as the expression of the glucocorticoid receptor in the hippocampus, D1 dopamine receptors in
the nucleus accumbens, and D2 dopamine receptors in the ventral tegmental area. Overall, the results
demonstrated that a prenatal WPD mitigates the effects of maternal stress in dams and offspring.
These results help to elucidate the relationship between pre- and post-natal nutrition, gene expression,
and behaviors that lead to long-term health effects.
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1. Introduction

Critical periods in an organism’s development may play a particularly important
role in the establishment of obesity-related eating behaviors and anxiety-like behavioral
phenotypes. During such critical periods, the biological settings of a developing system are
especially responsive to social and biological cues and are therefore open to modification in
response to environmental experience [1]. Importantly, many critical periods overlap with
periods of placental and lactational maternal provisioning, which may indicate that these
periods are windows of opportunity for the transfer of phenotypic information from one
generation to the next. Maternal stress impacts developing offspring during these critical
periods via several mechanisms, including hormones, nutrients, and altered maternal care.

Maternal antenatal stress and postpartum behavior are significant sources of early
environmental adversity. Environmental adversity occurring early in development is
a crucial factor contributing to disease susceptibility and anxiety states in later life [2].
Antenatal stressors in early human development are associated with alterations in cogni-
tive, behavioral, and emotional processes [3,4]. In rodents, stressors induce anxiety- and
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depression-like behaviors in pregnant dams, which lead to a reduction in attentive maternal
behaviors [5–7]. Importantly, the quality and quantity of care that mothers provide can
have lasting effects on offspring physiology, behavior, and neural gene expression [7].

Additionally, the exposure of pregnant dams to stress results in dramatic increases in
corticosterone, which has a profound impact on offspring brain development. Stressors
engage a network of limbic structures that are responsive to both interoceptive and exte-
roceptive inputs, including the hippocampus [8]. The recruitment of this stress network
depends on the release and action of corticotropin releasing factor (CRF) from the paraven-
tricular nucleus of the hypothalamus, and subsequent release of glucocorticoids from the
adrenal cortex. Acute and chronic stressors both lead to increases in synaptic activity and
dendritic bushing in the amygdala and anterior cingulate cortex (areas of the brain involved
in the processing of emotional stimuli) and reduce synaptic contacts in the hippocampus
and prefrontal cortex (areas of the brain involved in stimulus interpretation, planning,
and behavioral control) [9,10]. Stress exposure during late pregnancy is associated with
permanent modifications of hypothalamic pituitary adrenal axis (HPAa) functioning in the
offspring, including prolonged corticosterone responses to stress [11], and a predisposition
for limbic-biased stress responses. Evidence suggests that the pattern of HPAa activity
exhibited by prenatally stressed offspring is associated with an increased likelihood of
reward-based energy consumption [12].

Chronic stress and reduced maternal care are associated with decreased extracellular
dopamine in the nucleus accumbens shell and medial prefrontal cortex, leading to altered
sensorimotor gating and increased anxiety-like behavior [13,14]. This stress-related reduc-
tion in extracellular dopamine may be mitigated by exogenous substances, such as highly
palatable food. Eating highly palatable foods after a stressor attenuates the stress response
such that the expected stress induced CRF expression and secretion of adrenocorticotropic
hormone (ACTH) and glucocorticoids are reduced [15–17]. The apparent stress-reducing
properties of highly palatable food appear to be associated with increases in dopamine
release, as dopamine stimulation leads to downstream increases in the expression of gluco-
corticoid receptor mRNA and enhances negative feedback regulation of the hypothalamic
stress response [7]. Indeed, people who eat more comfort food have dampened HPAa
stress responses [18], and rats that are trained to earn vanilla sugar pellets and then ex-
posed to stress have basal levels of dopamine accumulation in the nucleus accumbens shell
comparable to their counterparts who received sugar pellets without subsequent stress [19].

The effects of stress and diet manipulation on forebrain dopamine in rats [19], along
with data from studies utilizing combined genetic and behavioral approaches [20], suggest
that highly palatable food consumption triggers an increase in dopamine secretion in the
mesolimbic pathway from the ventral tegmental area (VTA) to the nucleus accumbens
(Nacc). This activity further activates dopamine (DA) and opioid secretion from neurons
throughout the homeostatic feeding network [21]. Specifically, the activation of DA receptor
D2 (Drd2) in the VTA decreases the excitability of DA neurons and subsequent DA release
in downstream DA cells, such as those located in the Nacc [22]. Decreased Drd2 activity
in the VTA allows for the increased activation of DA receptor D1 (Drd1) and increased
extracellular DA in the Nacc. Taken together, this evidence raises the possibility that a
highly palatable diet might mitigate the effects of early developmental stress by increasing
mesolimbic dopaminergic activity and enhancing HPAa negative feedback efficiency via
increased hippocampal glucocorticoid receptor expression.

Current Study

Here, we investigated the impact of diet on the relationship between early-life stress
and offspring behavioral phenotype, as well as candidate neural gene expression, in
Mus musculus. Given the rewarding nature of a highly palatable Western-pattern diet
(WPD) [20,23], our overarching hypothesis was that a WPD would mitigate the effects of
maternal stress on offspring behavior and neural gene expression. Dams were chronically
stressed during the last week of gestation (beginning on estimated gestation day 14). The
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diet of half of the dams was switched from a standard chow diet (SCD) to WPD on the first
day of the stress treatment. We predicted that stressed dams fed SCD would spend less
time with their pups and display an increased latency to retrieve displaced pups relative
to NS dams and their WPD-fed counterparts. The latency to retrieve a displaced pup and
the time a dam spent with her pups were used as indicators of maternal behavior and
offspring early postnatal experience, with higher latency to retrieve and less time spent
with offspring suggestive of early postnatal stress. Additionally, to account for the potential
impact of the developmentally sensitive pubertal period on the relationship between early
stress and diet, offspring were assigned to either SCD or WPD at the time of weaning
(postnatal day 21). We hypothesized that prenatal and early postnatal stress would interact
with maternal diet to predict offspring anxiety-like behavior measured using the open-field
(OF) test. Behaviors observed in the OF, such as freezing, time spent exploring the inner
zone (vs. the outer zone, an indication of thigmotaxis) of the open field apparatus, and
general locomotor activity within the first 5 min of the test, are commonly used to assess
anxiety-like behavior in rodents. We hypothesized that early stress would promote less
exploratory (less time in the inner zone of the apparatus, greater distance traveled) and
more anxiety-like (more time spent freezing, less distance traveled) behavior in the OF for
the offspring of SCD-fed dams compared to NS controls. We predicted that the offspring of
stressed dams who were fed a WPD would exhibit more exploratory, and less anxiety-like
behavior compared to controls. We also hypothesized that a post-weaning WPD would
further reinforce any interaction between maternal WPD and PS.

In addition to assessing behavior, we measured mRNA expression for genes encoding
the glucocorticoid receptor, Nr3c1, and dopamine receptors Drd1 and Drd2. We chose
these genes because all three are implicated in stress- and reward-related behavior in brain
regions that modulate stress reactivity and hedonic behavior: hippocampus, Nacc, and VTA.
There is also evidence that the activation of VTA-Nacc DA projection neurons enhances
phasic DA release via the activation of D1-medium spiny neurons (MSNs) and reduces
phasic DA release via D2-MSN activity [24]. Moreover, the enhancement of Nacc D1-MSN
activity is associated with resilience to the negative effects of chronic social defeat, whereas
the enhancement of D2-MSNs is associated with the negative effects of chronic social defeat
stress [25]. Therefore, we predicted that, compared to control offspring, the offspring of
stressed dams who were fed a SCD would have lower Nr3c1 expression in the hippocampus,
resulting in more anxiety-like behavior due to less efficient negative regulation of the stress
response. If WPD mitigates the effects of maternal stress on Nr3c1 expression, then the
offspring of stressed dams who were fed a WPD should exhibit Nr3c1 expression levels and
behavior similar to the control group. We also predicted that low levels of Drd2 expression
in the VTA would be associated with higher levels of Drd1 expression in the Nacc among
offspring of stressed dams fed a WPD, promoting more exploratory and less anxiety-like
behavior, whereas higher levels of VTA Drd2 would be associated with lower levels of Nacc
Drd1 among offspring of stressed dams fed a SCD, promoting less exploratory and more
anxiety-like behavior.

2. Materials and Methods
2.1. Animals

Animals were female C57BL/6J mice (n = 49, mean age = 109.17 days, SD = 24.67 days)
and their offspring (n = 244). All animals were housed in polycarbonate cages with
Sanichip® bedding and were provided with ad libitum access to food and water. The
colony was maintained on a 12-h light–dark cycle (lights on at 0930 h). All animals were
treated per the Policy on Humane Care and Use of Laboratory Animals and all procedures
were approved by the Institutional Animal Care and Use Committee at Oklahoma State
University (protocol # AS-14-1).

For breeding, females were placed in the home cage of a male for 3 days. After the
breeding period, the females were removed from the male’s cage. Pregnant females were
individually housed and provided with nesting material (cotton nestlets). Litters (n = 49)
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were composed of 4–9 pups (Mean = 5.02, SD = 1.73). Litters of dams that failed to rear four
or more healthy pups to weaning (n = 4) or lost more than two pups that were born alive
(n = 3) were excluded from analyses. Losses did not vary by maternal treatment (r = −0.04,
p = 0.57).

Dams were weighed at parturition. There were no significant differences between
dams fed a SCD (Mean = 23.12, SEM = 0.40) and dams fed a WPD (Mean = 22.64,
SEM = 0.54). Offspring were weighed after completion of behavior experiments. Overall,
males weighed more than females (p < 0.0001). WPD-fed males weighed significantly more
than SCD-fed males (p < 0.0001), but there were no significant weight differences in females
(p = 0.09) (Figure 1).

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 4 of 17 
 

 

Sanichip® bedding and were provided with ad libitum access to food and water. The col-
ony was maintained on a 12-h light–dark cycle (lights on at 0930 h). All animals were 
treated per the Policy on Humane Care and Use of Laboratory Animals and all procedures 
were approved by the Institutional Animal Care and Use Committee at Oklahoma State 
University (protocol # AS-14-1). 

For breeding, females were placed in the home cage of a male for 3 days. After the 
breeding period, the females were removed from the male’s cage. Pregnant females were 
individually housed and provided with nesting material (cotton nestlets). Litters (n = 49) 
were composed of 4–9 pups (Mean = 5.02, SD = 1.73). Litters of dams that failed to rear 
four or more healthy pups to weaning (n = 4) or lost more than two pups that were born 
alive (n = 3) were excluded from analyses. Losses did not vary by maternal treatment (r = 
−0.04, p = 0.57). 

Dams were weighed at parturition. There were no significant differences between 
dams fed a SCD (Mean = 23.12, SEM = 0.40) and dams fed a WPD (Mean = 22.64, SEM = 
0.54). Offspring were weighed after completion of behavior experiments. Overall, males 
weighed more than females (p < 0.0001). WPD-fed males weighed significantly more than 
SCD-fed males (p < 0.0001), but there were no significant weight differences in females (p 
= 0.09) (Figure 1). 

 
Figure 1. Adult weights (in grams) of offspring by diet and sex. SCD = standard chow diet, WPD = 
western-pattern diet. **** p < 0.0001. 

2.2. Experimental Design and Treatment Groups 
We used a full factorial design with four maternal treatment groups and two off-

spring diet treatments per sex within each maternal treatment, resulting in a total of 16 
offspring groups (Figure 2). Pregnant females in the prenatal stress (PS) treatment (n = 24) 
underwent restraint stress in a ventilated plastic tube (Kaytee Critter Trails Fun-nels, 6.35 
cm diameter, 8.85 cm long) that was placed inside the home cage. A light (36,563 lux) was 
placed directly above the home cage. Mice were left in the restraint apparatus under the 
bright light for 45 min per day between the hours of 1100 and 1400, during approximate 
gestation days 14-20. Dams in the no stress (NS) treatment (n = 25) were not manipulated 
in any way. 

Figure 1. Adult weights (in grams) of offspring by diet and sex. SCD = standard chow diet, WPD = western-
pattern diet. **** p < 0.0001.

2.2. Experimental Design and Treatment Groups

We used a full factorial design with four maternal treatment groups and two offspring
diet treatments per sex within each maternal treatment, resulting in a total of 16 offspring
groups (Figure 2). Pregnant females in the prenatal stress (PS) treatment (n = 24) underwent
restraint stress in a ventilated plastic tube (Kaytee Critter Trails Fun-nels, 6.35 cm diameter,
8.85 cm long) that was placed inside the home cage. A light (36,563 lux) was placed directly
above the home cage. Mice were left in the restraint apparatus under the bright light
for 45 min per day between the hours of 1100 and 1400, during approximate gestation
days 14–20. Dams in the no stress (NS) treatment (n = 25) were not manipulated in any way.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 5 of 17 
 

 

 
Figure 2. Graphic representation of experimental groups. WPD: Western-pattern diet; SCD: stand-
ard chow diet; PS: Prenatal Stress; NS: No Stress; (−) indicates no diet change at weaning; (+) indi-
cates diet change at weaning. Figure created with Biorender.com. 

Dams in the WPD groups (stress n = 12, no stress n = 12) had their diet changed from 
SCD (Laboratory Rodent Diet 5001, LabDiet, St. Louis, MO, USA) to WPD (D12079B, Re-
search Diets, New Brunswick, NJ, USA; Figure 3) on estimated gestation day (GD) 14 (ac-
tual Mean GD = 13.20, SD = 1.27). Dams who were assigned to the SCD groups (stress n = 
12, no stress n = 13) had no change in their diet. 

Pups were weaned on postnatal day (PND) 21. Half of each litter was randomly as-
signed to a SCD and the other half to a WPD. Pups were housed with same-sex/same-diet 
siblings. 

 
Figure 3. Macronutrient kcal/gram % of experimental (WPD) and control (SCD) diets. WPD = west-
ern pattern diet; SCD = standard chow diet. 

2.3. Maternal Behavior 
Home-cage activity was used as a proxy for time dams spent in the nest, with higher 

activity used as an indication of dams spending less time in the nest with their pups. Dam 
activity levels were monitored continuously from parturition for approximately 24 h (the 
beginning of the first light cycle after parturition until the start of the second light cycle 
after parturition) using an automated monitoring system that recorded the number of in-
frared beam breaks per minute (VitalView Animal Monitoring Software, Version 5.0). 

Pup retrieval was measured in the first 24 h after parturition. The dam was removed 
from the home cage for 2 min. During this time, one pup was removed from the nest and 

Figure 2. Graphic representation of experimental groups. WPD: Western-pattern diet; SCD: standard
chow diet; PS: Prenatal Stress; NS: No Stress; (−) indicates no diet change at weaning; (+) indicates
diet change at weaning. Figure created with Biorender.com.
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Dams in the WPD groups (stress n = 12, no stress n = 12) had their diet changed
from SCD (Laboratory Rodent Diet 5001, LabDiet, St. Louis, MO, USA) to WPD (D12079B,
Research Diets, New Brunswick, NJ, USA; Figure 3) on estimated gestation day (GD) 14
(actual Mean GD = 13.20, SD = 1.27). Dams who were assigned to the SCD groups (stress
n = 12, no stress n = 13) had no change in their diet.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 5 of 17 
 

 

 
Figure 2. Graphic representation of experimental groups. WPD: Western-pattern diet; SCD: stand-
ard chow diet; PS: Prenatal Stress; NS: No Stress; (−) indicates no diet change at weaning; (+) indi-
cates diet change at weaning. Figure created with Biorender.com. 

Dams in the WPD groups (stress n = 12, no stress n = 12) had their diet changed from 
SCD (Laboratory Rodent Diet 5001, LabDiet, St. Louis, MO, USA) to WPD (D12079B, Re-
search Diets, New Brunswick, NJ, USA; Figure 3) on estimated gestation day (GD) 14 (ac-
tual Mean GD = 13.20, SD = 1.27). Dams who were assigned to the SCD groups (stress n = 
12, no stress n = 13) had no change in their diet. 

Pups were weaned on postnatal day (PND) 21. Half of each litter was randomly as-
signed to a SCD and the other half to a WPD. Pups were housed with same-sex/same-diet 
siblings. 

 
Figure 3. Macronutrient kcal/gram % of experimental (WPD) and control (SCD) diets. WPD = west-
ern pattern diet; SCD = standard chow diet. 

2.3. Maternal Behavior 
Home-cage activity was used as a proxy for time dams spent in the nest, with higher 

activity used as an indication of dams spending less time in the nest with their pups. Dam 
activity levels were monitored continuously from parturition for approximately 24 h (the 
beginning of the first light cycle after parturition until the start of the second light cycle 
after parturition) using an automated monitoring system that recorded the number of in-
frared beam breaks per minute (VitalView Animal Monitoring Software, Version 5.0). 

Pup retrieval was measured in the first 24 h after parturition. The dam was removed 
from the home cage for 2 min. During this time, one pup was removed from the nest and 

Figure 3. Macronutrient kcal/gram % of experimental (WPD) and control (SCD) diets. WPD = western
pattern diet; SCD = standard chow diet.

Pups were weaned on postnatal day (PND) 21. Half of each litter was randomly assigned
to a SCD and the other half to a WPD. Pups were housed with same-sex/same-diet siblings.

2.3. Maternal Behavior

Home-cage activity was used as a proxy for time dams spent in the nest, with higher
activity used as an indication of dams spending less time in the nest with their pups. Dam
activity levels were monitored continuously from parturition for approximately 24 h (the
beginning of the first light cycle after parturition until the start of the second light cycle after
parturition) using an automated monitoring system that recorded the number of infrared
beam breaks per minute (VitalView Animal Monitoring Software, Version 5.0).

Pup retrieval was measured in the first 24 h after parturition. The dam was removed
from the home cage for 2 min. During this time, one pup was removed from the nest and
placed in the far corner of the home cage. The dam was then returned to the home cage,
and pup retrieval was measured as the latency, in seconds, for the dam to pick up the pup
and return it to the nest.

2.4. Offspring Behavior

Offspring completed an OF for measurement of anxiety- and exploratory-like behavior
in adulthood (between PND 80 and 83). The open-field arena comprised a 16-square grid
enclosed by a clear Plexiglass box (60.96 × 60.96 × 60.96 cm) with no top. Trials were
conducted during the light cycle between 1000 and 1400 h. At the start of each trial, the
mouse was placed in the center of the OF in an opaque PVC cylinder. The cylinder was
removed after ~15 s, and the trial was run for 5 min, starting when the cylinder was lifted.
The OF was thoroughly cleaned with 70% ethanol and given 5 min to dry before each
trial began. Each trial was video recorded and scored using Any-Maze software (Stoelting
Co., Wood Dale, IL, USA). Three parameters were measured: total distance traveled, time
spent freezing, and time spent in the inner zone of the OF (middle four squares). The time
spent in the outer zone of the OF (12 squares surrounding center) is not included, since it is
simply the inverse of time spent in the inner zone. Lower locomotor activity (measured via
distance traveled), less time spent in the inner zone of the OF, and more time spent freezing
are suggestive of higher levels of anxiety [26].
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2.5. Neural Tissue Collection

Adult offspring (PND 80–83) were sacrificed by cervical dislocation after behavioral
testing. Brains were extracted into RNAlater, stabilized at 4 ◦C for 24–48 h, and stored at
−20 ◦C until microdissection. Target brain regions (Nacc, hippocampus, and VTA) were
dissected into RNAlater with a scalpel under a dissecting microscope [27]. Brain structures
were identified using the mouse brain atlas of Paxinos and Franklin [28].

2.6. RNA Extraction and Quantitative Real-Time PCR

RNA was extracted from frozen tissue using the RNeasy Mini Kit (Qiagen, Hilden, Germany)
according to the manufacturer’s protocol. RNA purity and concentration were evaluated using a
NanoDrop 2000 spectrophotometer. Complementary DNA (cDNA) was synthesized the same
day using iScript RT Supermix (Bio-Rad Laboratories, Hercules, CA, USA). Quantitative
PCR (qPCR) for the genes of interest (Drd1, Drd2, and Nr3c1) and the reference gene β-actin
(Actb) was performed using the SYBR Green PCR Master Mix (Bio-Rad) and CFX Connect
Real-Time PCR Detection System (Bio-Rad). Each reaction was run in triplicate. Primer
sequences for all genes are from [29]. Product specificity was assessed by an analysis of
melting curves; the amplification efficiency was 90% to 110% for each primer pair. The
results were analyzed by the ∆∆Ct method and normalized to the expression of β-actin.

3. Results
3.1. Maternal Behavior

Two separate two-way analysis of variance (ANOVA) tests were conducted to examine
the effects of maternal diet and PS on two maternal behaviors: the amount of time dams
spent outside of the nest (i.e., away from pups), and pup retrieval. The Šidák correction
was used to account for multiple comparisons of maternal behavior.

3.1.1. SCD-Fed Stressed Dams Spend Less Time in Nest with Pups Than WPD-Fed Stressed
Dams and Non-Stressed Dams

There was a significant interaction effect of PS and maternal diet on the amount of
time dams spent outside the nest in the first 24 h after their pups were born (F (1, 45) = 7.67,
p = 0.01). Post hoc comparisons indicated that PS dams who were fed SCD spent signifi-
cantly more time outside the nest as compared to NS dams who were fed SCD (the control
group) (t (45) = 3.07, p = 0.01; Figure 4A). In contrast, time outside of the nest did not differ
between PS and NS dams that were fed WPD.
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3.1.2. Stressed Dams Display a Higher Latency to Retrieve Displaced Pups, but a WPD
Significantly Decreases Latency to Retrieve Pups

A similar pattern was observed for the pup retrieval test. PS and maternal diet inter-
acted to exert a significant effect on pup retrieval in the first 24 h postpartum (F (1, 45) = 5.06,
p = 0.03), such that the mean latency to retrieve a displaced pup was significantly higher for
SCD-fed and PS dams compared to the NS control group (t (45) = 3.57, p = 0.002; Figure 4B).
Retrieval latency was statistically equivalent in PS vs. NS WPD-fed dams.

3.2. Open-Field Behavior in Adult Offspring

Open-field (OF) behaviors were analyzed using linear mixed models (LMM) with the
Satterthwaite approximation. Animals whose diets changed at weaning and those whose
diets remained consistent were analyzed separately. In both analyses, PS, maternal diet,
and sex were included as fixed effects, and litter ID as a random effect. When there were
significant main or interaction effects of sex, males and females were analyzed separately.
Post hoc pairwise comparisons were run with one-way ANOVAs using the Bonferroni
correction for multiple comparisons.

3.2.1. The Offspring of WPD-Fed Stressed Dams Exhibit More Locomotor Activity Than
the Off-Spring of SCD-Fed Stressed Dams

There were significant interaction effects for sex and PS (F (1, 104) = 18.99, p < 0.001),
as well as sex and maternal diet (F (1, 104) = 55.58, p < 0.001) on the distance traveled by
animals whose diet remained consistent at weaning (Figure 5A,B). For male offspring whose
diets remained consistent, there was a significant main effect of stress (t (25.25) = 12.22,
p < 0.0001) and no main or interaction effects for maternal diet. Specifically, maternal stress
significantly reduced locomotor activity, regardless of diet (Figure 5A).

Overall, females were more active than males (t (98.95) = 11.51, p < 0.0001). The
female offspring of PS dams displayed less locomotor activity than the offspring of NS
dams (t (17.65) = 16.03, p < 0.001). However, female PS+WPD offspring displayed more
locomotor activity than female PS+SCD offspring (t (18.81) = 8.49, p < 0.001). Likewise,
female NS+WPD offspring displayed more locomotor activity than the female NS+SCD
(t (16.63) = 5.27, p = 0.0004).

Male NS+SCD+ (see Figure 2 for notation definitions) were more active than their
PS+SCD+ counterparts (t (36.54) = 6.22, p < 0.00001) (Figure 5C). Whereas male PS+SCD+

were less active overall than their NS+SCD+ counterparts (t (26.98) = −6.29, p < 0.00001),
PS+WPD+ males were more active than PS+SCD+ (t (19.63) = 3.35, p = 0.02).

Female offspring of NS dams who had their diets switched at weaning were signifi-
cantly more active than their counterparts in the PS groups (t (30.66) = 25.31, p < 0.00001)
(Figure 5D). Interestingly, female NS+SCD+ were significantly less active than their NS+WPD+

counterparts (t (27.19) = −7.26, p < 0.00001).

3.2.2. The WPD-Fed Offspring of Stressed Dams Spend More Time in the Inner Zone of the
OF than the SCD-Fed Offspring of Stressed Dams When Diet Remains Consistent, but a
Diet Change at Weaning Reduces This Effect

There was a significant three-way interaction between PS, maternal diet, and sex on the
amount of time animals whose diets remained consistent spent in the inner zone of the OF
(F (1, 104) = 21.5, p < 0.001). Male (t (25.3) = −11.5, p < 0.001) and female (t (17.6) = −5.44,
p < 0.001) offspring of PS dams spent significantly less time in the inner zone of the OF
than their NS counterparts (Figure 6A-B). However, the WPD-fed male (t (22.4) = 5.60, p <
0.001) and female (t (18.8) = 17.64, p < 0.001) offspring of PS dams spent significantly more
time in the inner zone of the OF than their SCD-fed counterparts (Figure 6A,B). There was
no significant effect of diet on the amount of time spent in the inner zone of the OF among
the offspring of NS dams (Figure 6A,B).
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Figure 5. Total distance traveled in the OF for (A) males whose diets remained consistent at weaning;
(B) females whose diets remained consistent at weaning; (C) males whose diets were switched at
weaning; and (D) females whose diets were switched at weaning. Group n’s located above bars.
WPD = western pattern diet; SCD = standard chow diet. ** p < 0.01; *** p < 0.001; **** p < 0.0001.

For animals whose diets were switched at weaning, there was a significant three-way
interaction between PS, maternal diet, and sex on the amount of time spent in the inner
zone of the OF (F (1, 129) = 24.68, p < 0.001). Overall, the offspring of PS dams spent less
time in the inner zone of the OF compared to the offspring of NS dams (t (37.3) = 19.9,
p < 0.001) (see Figure 6C,D). Male NS+SCD+ spent significantly more time in the inner
zone of the OF than their NS+WPD+ counterparts (t (33.4) = 6.19, p < 0.001). Although
the male offspring of PS dams spent less time in the inner zone of the OF overall, male
PS+WPD+ spent significantly more time in the inner zone than their PS+SCD+ counterparts
(t (21) = −3.67, p = 0.009). Alternatively, there was no effect of diet on the female offspring
of PS dams. However, female NS+SCD+ spent significantly more time in the inner zone of
the OF than their NS+WPD+ counterparts (t (27.2) = 4.92, p < 0.001).
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Figure 6. Time spent in the inner zone of the OF for (A) males whose diets remained consistent
at weaning; (B) females whose diets remained consistent at weaning; (C) males whose diets were
switched at weaning; and (D) females whose diets were switched at weaning. Group n’s located
above bars. WPD = western pattern diet. SCD = standard chow diet. ** p < 0.01, *** p < 0.001;
**** p < 0.0001.

3.2.3. The Offspring of WPD-Fed Stressed Dams Spend Less Time Freezing Than the
Offspring of SCD-Fed Stressed Dams, a Diet Change at Weaning Reverses This Effect
in Females

For animals whose diets remained consistent at weaning, there was a significant
interaction between PS and maternal diet on the amount of time animals spent freezing
(immobile for ≥1 s) in the OF (F (1, 104) = 384.51, p < 0.001). There were no main or
interaction effects of sex.

Maternal diet had opposing effects on the freezing behavior of offspring of PS and
NS dams (t (32.3) = −26.2, p < 0.001). PS+WPD offspring spent less time freezing than
PS+SCD offspring (t (28.4) = −22.15, p < 0.001; Figure 7A). In contrast, NS+WPD offspring
spent slightly but significantly more time freezing than NS+SCD offspring (t (36.4) = 5.97,
p < 0.001).
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Figure 7. Total time that mice spent freezing during the OF. Freezing behavior was defined as lack of
movement for ≥1 s. (A) Animals whose diets remained consistent at weaning. Data from male and
female mice are pooled due to no significant main or interaction effects of sex. (B) Male mice whose
diets were switched at weaning. (C) Female mice whose diets were switched at weaning. Group n’s
located above bars. WPD = western pattern diet; SCD = standard chow diet. * p < 0.05, *** p < 0.001,
**** p < 0.0001.

For animals whose diets were switched at weaning, there was a significant three-
way interaction between PS, maternal diet, and sex on the amount of time spent freezing
(F (1, 129) = 31.42, p < 0.001). Overall, the PS offspring spent significantly more time freez-
ing than their NS counterparts (t (37.3) = 10.4, p < 0.001). Notably, in the female offspring of
PS dams, a diet change at weaning reversed this effect of maternal diet, such that PS+WPD+

offspring spent more time freezing than PS+SCD+ offspring (t (33.7) = 3.99, p = 0.002;
Figure 7C). In contrast, the reduction in time spent freezing in male PS+WPD vs. PS+SCD
offspring remained, regardless of post-weaning diet (t (19.6) = 4.44, p < 0.001).

3.3. Neural Gene Expression

Expression data were analyzed with separate three-way ANOVAs for offspring whose
diets remained consistent and those whose diets changed at weaning. We treated NS+SCD−

as controls. For each gene, we tested for effects of PS, maternal diet, sex, and their interac-
tions on normalized expression levels; figures show Log2 fold change relative to controls.
Male and female data were pooled unless a significant effect of sex was detected. Post hoc
tests were run with one-sample t-tests and the Šidák correction for multiple comparisons.

3.3.1. The Effects of PS on Drd1 Expression in the Nucleus Accumbens Depend on Both
Maternal and Post-Weaning Diet, and Are More Pronounced in Female Offspring

There were significant three-way interactions between PS, maternal diet, and sex on
Drd1 expression for both groups (diet consistent: F (1, 104) = 21.17, p < 0.001; diet changed:
F (1, 129) = 563, p < 0.001). Therefore, analyses were split by sex.

The significant interaction between maternal diet and PS remained for both male and
female offspring whose diet was consistent at weaning (males: F (1, 62) = 1118, p < 0.0001;
Figure 8A; females: F (1, 45) = 1401, p < 0.0001; Figure 8B), and whose diet was changed
at weaning (males: F (1,62) = 11.26, p = 0.0014; Figure 8C; females: F (1,67) = 231.90,
p < 0.0001; Figure 8D). Notably, Drd1 expression was significantly elevated relative to same-
sex controls among PS+WPD− offspring and reduced among PS+SCD− offspring (males,
WPD: t (14) = 32, p < 0.0001; SCD: t (18) = 27.12, p < 0.0001; females, WPD: t (9) = 9.96,
p < 0.0001; SCD: t (10) = 34.44, p < 0.0001). There was also a small but significant increase in
Drd1 expression in female NS+WPD− offspring ( t (9) = 9.96, p < 0.0001).
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Figure 8. Drd1 log2 fold change in expression in Nacc compared to no stress/SCD fed controls for
(A) males whose diets remained consistent at weaning, (B) females whose diets remained consis-
tent at weaning, (C) males whose diets were switched at weaning, and (D) females whose diets
were switched at weaning. Group n’s located above/below bars. WPD = Western pattern diet,
SCD = standard chow diet. **** p < 0.0001. #: significant fold change relative to control. ### p < 0.001,
#### p < 0.0001.

When combined with a diet change at weaning, the effects of maternal stress and diet
were sex-specific. In the male offspring of PS dams, the effect of maternal diet on Drd1
expression was effectively canceled out by the diet change (i.e., Figure 8A vs. Figure 8C).
The effect of diet change at weaning was even more pronounced in female offspring of
PS dams, resulting in the reversal of the effects of maternal diet on Drd1 expression as
compared to females whose diet matched their mothers’ (i.e., Figure 8B vs. Figure 8D).
Expression differences relative to female controls remained significant for both maternal
diet groups (WPD: t (15) = 16.87, p < 0.0001; SCD: t (17) = 27.43, p < 0.0001; Figure 8D), but
the direction of change in Drd1 expression was reversed as compared to females whose
diet matched their mothers’ (i.e., Figure 8B vs. Figure 8D).
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NS+SCD+ offspring had significantly higher Drd1 expression relative to controls. In
contrast to the PS groups, this effect of diet was more pronounced in males (t (16) = 31.28,
p < 0.0001; Figure 8C) than in females (t (23) = 8.13, p < 0.0001; Figure 8D).

3.3.2. The Offspring of Stressed Dams Have Decreased Drd2 Expression in the Ventral
Tegmental Area When Exposed to a Maternal and/or Postweaning WPD, and Increased
Expression When Maternal and Postweaning Diets Are SCD

As for Drd2, there was a significant interaction between maternal diet and PS in
offspring whose post-weaning diet matched their mothers’ (F (1, 104) = 3039.29, p < 0.001),
but no effect sex. For offspring whose diet changed at weaning, there were main effects of
PS (F (1, 129) = 1165.58, p < 0.001) and maternal diet (F (1, 129) = 139.40, p < 0.001), but no
effect of sex and no interaction effects.

The direction of the effect of maternal stress on offspring Drd2 expression depended
on maternal diet when post-weaning diet was unchanged (Figure 9A). Expression was
significantly increased relative to controls in the PS+SCD− mice (t (24) = 45.34, p < 0.0001)
and decreased in PS+WPD− mice (t (24) = −4.64, p = 0.0001). In contrast, PS+SCD+ mice
had significantly decreased Drd2 expression (t (36) = 34.17, p < 0.0001; Figure 9B), which was
comparable to PS+WPD+ mice (Figure 9A). Finally, a switch to SCD at weaning resulted
in a lesser, albeit still significant, reduction in Drd2 expression in the PS+WPD offspring
(t (30) = 19.15, p < 0.0001; Figure 9B).
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There was a significant interaction between maternal diet and PS on Nr3c1 expression 
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= 10.24, p = 0.003), but no main or interaction effects of sex. For offspring whose diet was 
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Figure 9. Drd2 log2 fold change in expression in VTA compared to no stress/SCD-fed controls in
(A) animals whose diets remained consistent at weaning, and (B) animals whose diets were switched
at weaning. Sex was pooled for analysis. Group n’s located above/below bars. WPD = western
pattern diet, SCD = standard chow diet. **** p < 0.0001. # Significant fold change from control.
#### p < 0.0001.

In the absence of maternal stress, Drd2 expression was slightly but significantly ele-
vated relative to controls in offspring exposed to a maternal, but not post-weaning, WPD
(Maternal WPD: t (24) = 4.63, p = 0.0001).

3.3.3. The Offspring of WPD-Fed Stressed Dams Have Increased Expression of
Glucocorticoid Receptor, Nr3c1, in the Hippocampus

There was a significant interaction between maternal diet and PS on Nr3c1 expression in
offspring whose post-weaning diet remained consistent with their mothers’ (F (1, 44.70) = 10.24,
mboxemphp = 0.003), but no main or interaction effects of sex. For offspring whose
diet was changed at weaning, there was a moderately significant three-way interaction
between PS, maternal diet, and sex (F (1, 127.4) = 4.26, p = 0.04) (Figure 10A). When split
by sex, the interaction between PS and diet remained significant for both sexes (males:
F (1, 31.24 = 7.71, p = 0.009; females: (F (1, 31.88) = 24.44, p < 0.0001) (Figure 10B,C). Overall,
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Nr3c1 expression was significantly higher in PS+WPD offspring relative to controls (no
diet change: t (33) = 3.24, p = 0.003); diet change, males: t (14) = 2.52, p = 0.02; diet change
females: t (15) = 4.48, p = 0.0004; see Figure 10). In contrast, expression was significantly
reduced in the PS+SCD offspring, but only when diet was switched to a WPD at weaning
(males: t (37) = 4.19, p = 0.0002; females: t (17) = 6.24, p < 0.0001).
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4. Discussion

In the present set of experiments, we studied the impact of PS and diet on the stress-
related behavior and neural gene expression of adult offspring. Overall, we found that
the consequences of early-life stress for adult behavior and neural gene expression are
significantly impacted by diet.

The offspring of SCD-fed PS dams who remained on a SCD post-weaning displayed
reduced Nacc Drd1 and hippocampal Nr3c1 expression, increased VTA Drd2, and increased
anxiety-like behavior compared to NS mice. This result is consistent with previous work,
which demonstrated that prenatal restraint stress exposure results in decreased hippocam-
pal Nr3c1 expression in offspring, together with long-lasting changes in DA sensitivity in
the Nacc of adult offspring [30,31].

In contrast, the offspring of PS, WPD-fed dams who were fed a WPD post-weaning
displayed increased Drd1 and Nr3c1 expression and decreased Drd2 expression compared to
their SCD-fed counterparts, along with a more exploratory-like behavioral phenotype. Our
results are consistent with others that have found an increase in exploratory-like behavior
among the offspring of dams that were fed a cafeteria or high-fat diet [32,33], although dams
were not subjected to PS in those studies, and offspring were provided with standard SCD at
weaning. In contrast to our findings, there have also been several studies that demonstrate
that a high-fat perinatal diet can lead to increased anxiety-like behavior in offspring [34,35].
Importantly, evidence suggests that the timing of high-fat or cafeteria diet administration
plays a role in the development of offspring anxiety-like behavior. Elegant experiments
conducted by Wright and colleagues [36] demonstrated that administering a WPD several
weeks before conception leads to significantly higher incidences of maternal obesity and
generally increases anxiety-like behavior in adult offspring. However, restricting the high-
energy diet to gestation and lactation led to decreased anxiety-like behavior in offspring.
Indeed, our results are consistent with studies that limit high-energy diets to gestation
and lactation, preventing maternal obesity, and demonstrating a protective effect of these
modified diets on anxiety-like adult behavior [32,36,37]. Moreover, the behavioral and gene
expression differences we observed in the adult offspring of PS, WPD-fed dams who were
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maintained a WPD post-weaning, compared to their SCD-fed counterparts, indicates that
stress-related reductions in dopamine signaling may be mitigated by diet [19,37].

Interestingly, the offspring of PS dams whose diets remained consistent at weaning
displayed a marked imbalance between Nacc Drd1 and VTA Drd2 expression, such that
those offspring fed SCD had higher Drd2 and lower Drd1 expression, whereas those fed
a WPD had higher Drd1 and lower Drd2 expression. Recent research demonstrates that
this type of Drd1/Drd2 imbalance could indicate the sensitization of the mesolimbic system
and contribute to addictive-like behavior [38]. This has potentially important implications
for human health. For example, the offspring of mothers who experience chronic stress
while pregnant and consuming a WPD may develop an increased susceptibility to engage
in both compulsive eating and problematic drug use. Indeed, there is evidence that VTA
Drd2 knockout rats demonstrate an increase in incentive motivation toward cocaine and
highly palatable food [39], and that a high-fat/high-sugar diet enhances the abuse-related
effects of cocaine [40,41]. Taken together, this evidence further supports the important role
of Drd2 in compulsive eating and addictive behavior.

The differences in behavior and gene expression we observed in the offspring of
WPD-fed mothers could be due to a direct effect of the diet, as milk composition reflects the
composition of the WPD. Maternal diet may also impact offspring indirectly via effects on
maternal behavior. Both under- and over- nutrition have been shown to change maternal
behavior [42,43], consistent with the observations of maternal behavior in the current study.
Increased maternal care is also associated with a reduction in neuroendocrine responses
to stress in rodent offspring that persists throughout life [44,45]. Though there was a
significant effect of diet on maternal behavior in the current study, it is unlikely that the
behavioral and neural gene expression effects observed in offspring were due exclusively
to an indirect effect of maternal behavior, since changing diet at weaning also changed
behavior and gene expression profiles. Instead, perhaps changing offspring diet at weaning
serves as an environmental stressor capable of inducing stress-related gene expression
changes and behavior. Moreover, the sex differences observed in the animals whose diets
were changed indicate that females may be more sensitive to the stressor of diet change at
weaning than males. For example, changing diet at weaning also ameliorated the increase
in exploratory behavior observed in S+WPD− females. Indeed, both males and females
in these groups displayed more anxious-related behavior than controls, as indicated by
increased freezing, less distance traveled, and less time in the center of the OFT, which
is consistent with studies that have assessed anxiety-related behavior in the offspring of
high-fat-diet-fed dams that were subsequently maintained on SCD [34,43,44]. However,
male S+WPD+ displayed less anxiety-like behavior compared to S+SCD+ males. This is
consistent with a large body of literature suggesting that males are more sensitive to stress
during the prenatal and early postnatal period (for review, see [46]). While females appear
to display resiliency to the effects of prenatal and early postnatal stress, the results of these
developmental insults on phenotype are often exposed following periods of hormonal
activation and fluctuation, such as during the adolescent period. Future work should
explore the mechanisms contributing to sex differences in the context of early stress and
dietary changes.

5. Conclusions

The results of this study add to existing evidence that the interaction between stress
and diet can have long-term effects on behavior [17,32,34,36,43,47–55] and suggest that
a WPD may have the potential to mitigate stress-induced gene expression changes that
occur early in development and the anxiety-like behavioral phenotypes such molecular
changes lead to. This is not to suggest that consuming highly palatable comfort food is a
healthy or desirable form of stress management. The neurobiological processes that occur
during stress and feeding contribute to sustained negative reinforcement, leading to a
short-term gain in well-being (stress reduction) with a long-term cost to health (i.e., obesity,
metabolic disease) [56]. Instead, these results could help explain why certain individuals
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continue over-consuming highly palatable comfort food to their detriment, as well as why
non-surgical weight-loss interventions have such a low success rate in the long term [57].
Although physiology plays a major role in the difficulties of long-term weight-loss [57],
at least part of the story may concern the impact of a maternal WPD on a stressed and
developing brain.
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Dietary Patterns Are Associated with Susceptibility to a Depressive-like Phenotype in Rat Offspring. Dev. Cogn. Neurosci. 2021,
47, 100879. [CrossRef]

34. Sasaki, A.; de Vega, W.C.; St-Cyr, S.; Pan, P.; McGowan, P.O. Perinatal High Fat Diet Alters Glucocorticoid Signaling and Anxiety
Behavior in Adulthood. Neuroscience 2013, 240, 1–12. [CrossRef] [PubMed]

35. Bilbo, S.D.; Tsang, V. Enduring Consequences of Maternal Obesity for Brain Inflammation and Behavior of Offspring. FASEB J.
2010, 24, 2104–2115. [CrossRef] [PubMed]

36. Wright, T.; Langley-Evans, S.C.; Voigt, J.-P. The Impact of Maternal Cafeteria Diet on Anxiety-Related Behaviour and Exploration
in the Offspring. Physiol. Behav. 2011, 103, 164–172. [CrossRef] [PubMed]

37. Adam, T.C.; Epel, E.S. Stress, Eating and the Reward System. Physiol. Behav. 2007, 91, 449–458. [CrossRef] [PubMed]
38. Dobbs, L.K.; Kaplan, A.R.; Bock, R.; Phamluong, K.; Shin, J.H.; Bocarsly, M.E.; Eberhart, L.; Ron, D.; Alvarez, V.A. D1 Receptor

Hypersensitivity in Mice with Low Striatal D2 Receptors Facilitates Select Cocaine Behaviors. Neuropsychopharmacology 2019,
44, 805–816. [CrossRef]

39. de Jong, J.W.; Roelofs, T.J.M.; Mol, F.M.U.; Hillen, A.E.J.; Meijboom, K.E.; Luijendijk, M.C.M.; van der Eerden, H.A.M.; Garner,
K.M.; Vanderschuren, L.J.M.J.; Adan, R.A.H. Reducing Ventral Tegmental Dopamine D2 Receptor Expression Selectively Boosts
Incentive Motivation. Neuropsychopharmacology 2015, 40, 2085–2095. [CrossRef]

40. Collins, G.T.; Chen, Y.; Tschumi, C.; Rush, E.L.; Mensah, A.; Koek, W.; France, C.P. Effects of Consuming a Diet High in Fat and/or
Sugar on the Locomotor Effects of Acute and Repeated Cocaine in Male and Female C57BL/6J Mice. Exp. Clin. Psychopharmacol.
2015, 23, 228–237. [CrossRef]
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