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Abstract

The XX/XY sex chromosome system is deeply conserved in therian mammals, as is the role of Sryin testis determination, giving the impression
of stasis relative to other taxa. However, the long tradition of cytogenetic studies in mammals documents sex chromosome karyotypes that
break this norm in myriad ways, ranging from fusions between sex chromosomes and autosomes toY chromosome loss. Evolutionary conflict,
in the form of sexual antagonism or meiotic drive, is the primary predicted driver of sex chromosome transformation and turnover. Yet conflict-
based hypotheses are less considered in mammals, perhaps because of the perceived stability of the sex chromosome system. To address this
gap, we catalog and characterize all described sex chromosome variants in mammals, test for family-specific rates of accumulation, and consider
the role of conflict between the sexes or within the genome in the evolution of these systems. We identify 152 species with sex chromosomes
that differ from the ancestral state and find evidence for different rates of ancestral to derived transitions among families. Sex chromosome-
autosome fusions account for 79% of all variants whereas documented sex chromosome fissions are limited to three species. Ve propose that
meiotic drive and drive suppression provide viable explanations for the evolution of many of these variant systems, particularly those involving
autosomal fusions. We highlight taxa particularly worthy of further study and provide experimental predictions for testing the role of conflict and

its alternatives in generating observed sex chromosome diversity.
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Introduction

The therian sex chromosomes originated in the common
ancestor of marsupial and placental mammals when a tran-
scription factor on an autosome acquired a testis-determining
function (Koopman et al. 1991; Potrzebowski et al. 2008;
Veyrunes et al. 2008). More than 150 million years later, the
ancestral gene content of the X chromosome is largely pre-
served, whereas progressive suppression of recombination
with the X catalyzed massive genetic and structural decay on
the Y. Consistent with evolutionarily early degeneration of
the Y chromosome, extant placental mammals carry subsets
of the same 18 ancestral Y chromosome genes and loss of
Sry as the first gene in the testis-determining cascade is rare
(Bellott et al., 2014; Cortez et al. 2014).

Conflict, whether between the sexes or within the ge-
nome, is a widely invoked driver of sex chromosome evolu-
tion with a compelling body of theoretical support (Fisher
1931; Charlesworth and Charlesworth 1980; Bull 1983;
Rice 1987; Charlesworth 1991; van Doorn and Kirkpatrick
2007; Ubeda et al. 2015; Patten 2018). These conflict-based
models apply to any system with genetic sex determination,
including mammals. However, the unusual longevity of the
mammalian sex chromosomes and the apparent decrepitude

of the Y motivated theoretical focus on stasis (van Doorn and
Kirkpatrick 2007; van Doorn 2013) and decay (Charlesworth
and Charlesworth 2000; Bachtrog 2008) rather than conflict
(but see Blackmon and Brandvain 2017). Even brief intrigue
over imminent Y chromosome loss in our own species was
quickly dismantled by data showing that Y degeneration had
decelerated to a point that made disintegration of the en-
tire chromosome exceedingly unlikely (Aitken and Marshall
Graves 2002; Graves 2004; Hughes et al. 2005; Griffin
2012). Given that signatures of conflict have proven hard
to demonstrate in relatively young sex chromosome systems
where they should be most evident (e.g. Wright et al. 2017,
Charlesworth et al. 2021), an ancient sex chromosome system
with decelerating decay seems unlikely to provide much in-
sight into conflict-driven evolution. Enforcing this view, the
mammalian sex chromosomes are frequently referenced as
the evolutionarily stable contrast to systems with recent or
recurrent sex chromosome turnover (e.g. van Doorn and
Kirkpatrick 2007; Veyrunes et al. 2008; Yoshida and Kitano
2012; Kikuchi and Hamaguchi 2013; Graves 2016).

Here, we argue that the overall conservation of sex-
determining pathways and sex chromosome identity in
mammals masks both considerable diversity in the ge-
netic and structural features of the sex chromosomes, and
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flexibility in their distribution between the sexes. Much of
the variation in mammalian sex chromosome systems was
discovered and described by cytologists in the last century
(e.g. Fredga 1970; Vorontsov et al. 1980) but remains under-
represented in modern evolutionary genomic studies. In an
attempt to close this gap, we enumerate and categorize previ-
ously reported variants on the ancestral XX female, XY male
system, and evaluate their taxonomic distribution. We discuss
the evidence that conflict—between the sexes or within the
genome in the form of meiotic drive—played a major role in
the evolution of these variant sex chromosome systems. We
close with a brief discussion of non-conflict-based models for
sex chromosome evolution.

Although humans are not discussed herein, this is a paper
about the diversity of sex chromosomes and sex determination
in mammals and is therefore broadly relevant to the diversity
of sexual and gender identities in our own species. We aim to
use inclusive language (e.g. avoiding terms like “feminizing” and
“masculinizing”) but found it hard to write about sex chromo-
some evolution without using the terms “male” and “female,”
thus enforcing a binary view of sex. In this, we sacrifice inclu-
sivity for the sake of simplicity. We emphasize, however, that the
diversity of sex chromosome genotypes in mammals provides a
strong argument against both the immutability of chromosomal
sex, and the non-intersection of “male” and “female” develop-
mental pathways (e.g. Nelson and Kriegsfeld 2017).

Methods

Data collection

We generated an initial list of mammals with variant sex
chromosomes using literature reviews on the topic (Fredga
1970; Vorontsov et al. 1980; Romanenko and Volobouev
2012; Saunders and Veyrunes 2021). Once we identified spe-
cies of interest, we searched mammalian karyotype datasets
(Pardo-Manuel de Villena and Sapienza 2001; Graphodatsky
et al. 2020) for evidence of variant sex chromosomes in
other members of their respective genera or families. We
also searched the literature for additional species with var-
iant sex chromosome systems using Google Scholar, with
the search terms “novel sex chromosomes mammals,” “sex
chromosome fusion mammals,” “sex autosome translocation
mammals,” “sex chromosome rearrangement mammals,”
“sex chromosome loss mammals,” and iterations thereof
replacing “mammals” with families and genera of interest. We
retained only species for which a published karyotype could
be sourced but did not otherwise evaluate the strength of ev-
idence supporting each of the sex chromosome variants we
cataloged. Species names were brought into alignment with
the Mammal Diversity Database v1.11 (2023). Monotremes
were excluded because their sex chromosomes are independ-
ently derived relative to Theria (Veyrunes et al. 2008). We
note that restricting ourselves to published karyotypes in-
evitably means that we will undercount the number of var-
iant sex chromosome systems in some taxa. For example, all
members of the tribe Tragelaphini (spiral-horned antelopes)
are inferred to have the same Y-autosome fusion, but karyo-
type data is not available for all species (Rubes et al. 2008).
The degree to which different families have been studied and
cytogenetically characterized is also likely to be inconsistent,
due to variation in the level of scientific interest in a taxon
and the availability of specimens.
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Taxonomic distribution of variant sex
chromosomes

The number of species with novel sex chromosome sys-
tems varies between mammalian lineages, but it is unclear
whether these variants are over- or underrepresented in
a given taxon. Most examples of mammalian species with
variant sex chromosomes, especially those that are not
sex-autosome fusions, are found in rodents (Saunders and
Veyrunes 2021). However, as Rodentia comprises the largest
order of mammals, this pattern may be simply a function
of species richness. To compare the rates at which novel sex
chromosome configurations arise in mammalian families,
we used the ratebytree function (Revell et al. 2018) in the
R package phytools v1.5.1 (Revell 2012). We sampled 100
trees from the posterior distribution of the node-dated
mammal phylogeny from Upham et al. (2019) and provided
the ratebytree function with family-level subsets and char-
acter codes indicating whether or not each species had an
XX/XY system. We included all families comprised of three
or more species with at least one novel sex chromosome con-
figuration and one XX/XY system. ratebytree fits two Mk
models (Lewis 2001); one where all trees have the same
transition rate, and another where transition rates can vary
between trees (Revell 2012). The two models are compared
with a log-likelihood ratio test. We first fit a unidirectional
model where the transition rate from variant systems to XX/
XY is set to zero. This should reflect the biological reality
that no transitions from a variant system to the ancestral
XX/XY configuration have been observed. This allowed us
to infer whether the rate at which novel sex chromosomes
evolve varies significantly between families and whether the
inferred rate is sensitive to tree topology. We additionally
fit both the unidirectional model and an equal rates model
to the maximum clade credibility tree from Upham et al.
(2019), the results of which are reported in Supplementary
Table 1. We note that, because some families are closely re-
lated (e.g. Cricetidae and Muridae) and may share the same
rate due to common ancestry, the inferred rates are likely
not independent. Furthermore, the inferred rates do not ac-
count for different categories of sex chromosome variants
that evolved within genera, as in Tokudaia (Ryukyu spiny
rats) and Ellobius (mole voles).

Species were assumed to be XX/XY unless published evi-
dence of a variant sex chromosome system could be found.
However, erroneously labeling species as XX/XY due to lack
of available evidence for a variant sex chromosome system
could inflate estimated transition rates. Conversely, if a species
incorrectly assigned XX/XY is closely related to other species
assigned XX/XY (correctly or incorrectly) then rates will be
deflated. Because restricting the entire analysis to species with
known sex chromosome systems would introduce a family-
specific sampling bias that would distort the relative rates be-
tween families, we evaluated the effect of XX/XY assignment
uncertainty by limiting our analysis to species with published
sex chromosome karyotypes from three families with high
estimated transition rates: Atelidae, Bovidae, and Herpestidae.

Results

Categorizing variant sex chromosome systems

We identify nine broad categories of variant sex chromosomes
in mammals (Table 1), accounting for 152 species in 58
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genera and 20 families with published karyotypes (Fig. 1).
These numbers are certainly conservative as many species of
mammals remain unkaryotyped and we exclude taxa inferred
to have variant sex chromosomes but lacking cytogenetic
confirmation. Moreover, population-level variation in sex
chromosome configuration (e.g. Ortells et al. 1988; Ventura
et al. 2011) is presumably underestimated. As a rough bench-
mark for the sampling breadth of mammal karyotypes, the
Atlas of Mammalian Chromosomes (Graphodatsky et al.
2020) contains approximately 1,100 karyotypes out of the
almost 6,500 species of mammals (Burgin et al. 2018). The
three most common categories involve fusions between one or
more sex chromosome and autosomes. Such rearrangements
are thought to be highly deleterious and so should be rare
(Ashley et al. 2002; Barasc et al. 2012; White et al. 1998;
but see Charlesworth and Charlesworth 1980; Guerrero and
Kirkpatrick 2014). While we use the general term fusion, most
of these cases are Robertsonian translocations (Schubert and
Lysak 2011). Three categories are represented by only one
or two species each: X-Y fusion and X- or Y-fission. Finally,
we identify three categories that involve modification of an-
cestral sex-determining pathways: gene amplification, Y chro-
mosome loss, and oocyte-promoting X (X*) chromosomes.

Rate estimation

Under our simplified approach of assigning sex chromosomes
as either variant or not, we find evidence of family-specific
differences in rate of variant sex chromosome evolution
(Fig. 2; Supplementary Table 1). Under an equal rate model on
the maximum clade credibility tree (Upham et al. 2019), the
highest transition rates were found in Zapodidae (5.6411),
Atelidae (0.1347), and Aotidae (0.1000), while the lowest rate
was in Cercopithecidae (0.0030), a family with 125 species of
which one has variant sex chromosomes. Zapodidae’s obvi-
ously elevated rate relative to other families is likely an over-
estimate stemming from the small number of species in the
family (five species, two of which have variant sex chromosome
systems). After repeating the analysis without Zapodidae, we
found that family-specific rates still show a better fit than
a common-rate model (Equal rate model. Likelihood ratio:
80.4501. P = 0). The unidirectional rate model, which should
be more biologically realistic, also found family-specific rates
to fit better than a common-rate (Likelihood ratio: 96.4545.
P =0). While the order of families from highest to lowest
rate is mostly the same, the three fastest rates in the unidirec-
tional model are inferred in Atelidae (0.0827), Herpestidae
(0.066), and Zapodidae (0.0629)—note that Zapodidae has
an inferred rate far more in line with the other families than
under the equal rate model. When examining the distribution
of rates from across the set of 100 credible phylogenies, the
inferred transition rates are inconsistent in the five families
with the highest rates, whereas most families of mammals
have low inferred rates that are stable across different tree
topologies (Fig. 2). Thus, our results suggest that mammal
families have lineage-specific rates at which they acquire var-
iant sex chromosomes. While most variant sex chromosome
systems are found in rodents, this does not correspond to
higher inferred transition rates in families within Rodentia.
Restricting the analysis to species with published sex chro-
mosome karyotypes in Atelidae, Bovidae, and Herpestidae
(Supplementary Fig. 1; Supplementary Table 2), had different
effects on each family that reflect gaps in both sampling

completeness in the phylogeny used and our knowledge of sex
chromosome karyotypes. For Herpesitdae, the estimated dis-
tribution of transition rates was reduced but remained quali-
tatively high relative to other families (Fig. 2; Supplementary
Fig. 1). The inferred transition rates for Bovidae were also
lower, which is likely a consequence of species that would
be XX/XY but are missing from the phylogeny. The biggest
difference in estimated transition rates between our two
approaches was seen in Atelidae, in which the removal of taxa
with unconfirmed sex chromosome karyotype lead to a much
lower estimated transition rate—though still higher than the
majority of families in the analysis with all species included—
and a narrower range of estimated rates. Taken together, these
results reinforce the difficulties in estimating accurate rate
values without comprehensive sex chromosome karyotypes
and given topological uncertainty in phylogenies. Despite
our two approaches yielding inconsistent specific transition
rate estimates, both suggest that several families of mammals
show elevated transition rates from XX/XY chromosomes to
variant sex chromosome systems.

Our model neglects additional parameters that are worthy
of future consideration. For example, different families are
likely to have their own baseline rate of chromosome fu-
sion and fission, which would naturally influence the rate of
sex-autosome fusions. Similarly, chromosome morphology
(Blackmon et al. 2019) and the number of chromosomes in
a karyotype (Anderson et al. 2020) will directly impact the
probability that a given fusion involves a sex chromosome.
The rate at which chromosome fusions accumulate is also
likely influenced by generation time. However, high transi-
tion rates in taxa with very different generation times (i.e.
primates and rodents) suggest minimal effects of this param-
eter on the current dataset.

Discussion

Review of the literature on mammalian sex chromosomes
revealed over 150 species with variant sex chromosome
systems. Analysis of the distribution of these variants
across therian mammals indicates that a propensity for sex
chromosomes to diverge from the traditionally ultra-stable
XX/XY configuration is taxonomically widespread. Here,
we consider the evolution and maintenance of representative
systems in light of two types of conflict: between the sexes
and within the genome in the form of meiotic drive. We begin
with a brief summary of the conflict-based models for sex
chromosome evolution and then discuss the major types of
variant sex chromosome systems in turn. In closing, we out-
line non-conflict-based models for sex chromosome evolu-
tion, with particular focus on a recently proposed model that
emphasizes the role of regulatory divergence in the origin
of heteromorphic sex chromosomes (Lenormand et al. 2020;
Lenormand and Roze 2022).

Models of conflict-driven sex chromosome
evolution

What drives the evolution of suppressed recombination
between homologous chromosomes? This is the ques-
tion that all models for the evolution of heteromorphic sex
chromosomes are obliged to address. Nearly a century ago,
Fisher interpreted the excess of Y chromosome-linked color
genes in guppies (Poecilia reticulata) as a consequence of
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selection to limit sexually selected genes to the sex they ben-
efit (Fisher 1931). This hypothesis seeded an elegant body of
theory on the role of sexual conflict in sex chromosome ev-
olution (Charlesworth and Charlesworth 1980; Bull 1983;
Rice 1987; Charlesworth 1991; van Doorn and Kirkpatrick
2007). The key features of these models are, 1) linkage be-
tween a sex-determining locus and one or more sexually an-
tagonistic loci (loci that benefit one sex but harm the other),
and 2) selection for suppressed recombination that restricts
the interval to the sex it benefits, thereby resolving intralocus
sexual conflict. The presence or gain of additional sexually
antagonistic loci on the same chromosome favors recombina-
tion suppression over a larger interval, ultimately leading to
sex-limitation of an entire chromosome (Charlesworth 1991).
Importantly, these models apply equally well to the origin of
new sex chromosomes, and to neo-sex chromosome systems,

in which an autosomal fusion to an existing sex chromosome
generates a new sex-linked part of the genome. In both cases,
gene movement to the Y chromosome resolves male-benefit
sexual antagonism whereas the asymmetric distribution of
X chromosomes between males and females makes the X a
predicted hotspot for recurrent bouts of sexually antagonistic
evolution (Rice 1984).

Novel sex-determining loci and sex chromosome
configurations may also achieve fixation through meiotic drive,
the biased transmission of a locus (Pardo-Manuel de Villena
and Sapienza 2001; Kozielska et al. 2010). Meiotic drive sensu
stricto manifests during oogenesis where the structural features
of a chromosome, such as its centromere (Chmatal et al. 2014;
reviewed in Clark and Akera 2021; Kumon and Lampson
2022; Talbert and Henikoff 2022), may aid in its transmis-
sion to the ovum rather than the polar body (Rhoades 1942;
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Phyllostomidae (30/204) 4
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Macropodidae (2/63) 4
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Cricetidae (23/711) 4
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T
0.00 0.05

T
0.10 0.15

Transition rates inferred across 100 credible trees (Unidirectional model)

Fig. 2. Density plot showing the inferred transition rate from XX/XY to a variant sex chromosome system in families of mammals. Rate distributions
are inferred by fitting a unidirectional model to 100 trees sampled from the posterior distribution of Upham et al. (2019). Numbers in brackets after
family names indicate the number of species with variant sex chromosome systems as a fraction of the total number of species in the family that
are present in the phylogeny. Two families of therian mammals with variant systems are excluded: Choloepodidae (2/2) and Thlyacomyidae (1/1).
Results from fitting both the equal rates and unidirectional rate models to the maximum clade credibility tree from Upham et al. (2019) are reported

in Supplementary Table 1.

Sandler and Novitski 1957). More generally, the term has come
to apply to any form of non-Mendelian inheritance, including
malsegregation or non-disjunction of the nondriving locus, or
the death of sperm lacking the driver (Presgraves et al. 1997).
As meiotic drivers are selfish elements whose biased transmis-
sion tends to impose steep fitness costs (Fishman and Saunders
2008; Lindholm et al. 2016), genomic responses that restore
equilibrium by suppressing the driver are expected, as are fur-
ther mutations to “strengthen” the force of drive, leading to
cycles of conflict (Jaenike 1999; Hall 2004). This is especially
true for sex chromosomes, which are more likely to develop
drivers than autosomes (Frank 1991; Hurst and Pomiankowski
1991), and where failure by the genome to respond to drive can
lead to extinction from warped sex ratios and the elimination
of one sex (Hamilton 1967; Jaenike 2001; Holman et al. 2015).
Depending on the fitness cost of a driving X, an autosome that
acquires a new sex-determining locus may invade (Werren and
Beukeboom 1998; Kozielska et al. 2010), a mechanism that
has been proposed in two mole species, Talpa europaea and T.
occidentalis (McVean and Hurst 1996). We exclude these from
our dataset as there is no associated change in sex chromo-
some configuration, but XY individuals of both species have
testes and XX individuals possess ovotestes, which have both
a typically functioning ovarian section and a testicular section
(Jiménez et al. 2023).

Drivers are often associated with structural variants
(Charlesworth and Hartl 1978; Jaenike 2001; Lyon 2003)
and changes in chromosome morphology (Pardo-Manuel de
Villena and Sapienza 2001; Yoshida and Kitano 2012), which
facilitates the reduced recombination necessary to form het-
eromorphic sex chromosomes. Beyond the proposed role of
meiotic drive in the origin of sex chromosomes (Ubeda et al.
2015), it has been invoked to explain shifts in karyotype
morphology (Pardo-Manuel de Villena and Sapienza 2001;
Blackmon et al. 2019) and, by extension, the evolution of
neo-sex chromosomes (Yoshida and Kitano 2012) and other
variant sex systems (Helleu et al. 2015).

X-autosome and Y-autosome fusions

The most common forms of variant sex chromosomes in
mammals are those resulting from fusions between a sex
chromosome and an autosome. These fusions, which are
achieved primarily by Robertsonian translocation (Schubert
and Lysak 2011), account for 79% of all our observations
(Table 1). Typically, an X-autosome fusion generates an
XY,Y, sex chromosome system, with Y, representing the re-
maining unfused autosomal homolog, whereas Y-autosome
fusions lead to an X, XY condition (Fig. 3a). In therian
mammals with published karyotypes, we identified 49 species
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Fig. 3. Outcomes of sex chromosome-autosome fusions in mammals.
a) An X-autosome fusion produces an XY, Y, system; a Y-autosome
fusion produces an X X,Y system. b) The fusion of a homologous pair
of autosomes to both X andY explains the large sex chromosomes of
gerbils in the clade, Gerbillus (sensu Ndiaye et al. 2016). In G. gerbillus,
a second pair of autosomes are fused to the X andY, and fission of
the ancestral part of the Y chromosome produced an XY, Y, system
(Wahrman et al. 1983). Dashed lines indicate that transitional sex
chromosome states were likely involved. A, autosome.

across 21 genera with an X-autosome fusion, 27 species
across 13 genera with a Y-autosome fusion, and 44 species
in 20 genera with both X- and Y-autosome fusions. Of the 54
unique genera, 18 had only X-autosome fusions and 10 had
only Y-autosome fusions.

Several mechanisms have been proposed to explain the fix-
ation of sex-autosome fusions. Classic theory predicts that
sexually antagonistic loci on an autosome are released from
constraint by translocation to either the X or Y (Charlesworth
and Charlesworth 1980; Rice 1984). More recently, it
was suggested that meiotic drive can fix sex-autosome
translocations when chromosome morphology biases trans-
mission rate (Yoshida and Kitano 2012). This preferential
transmission of one chromosome morphology over another
is termed meiotic polarity. Genetic drift (Lande 1985) and au-
tosomal loci with heterozygote advantage (Charlesworth and
Wall 1999) may also contribute.

Single sex-autosome fusions.

Some of the best-known examples of X-autosome
translocations in mammals are those of shrews in the genus
Sorex, which exhibits remarkable inter- and intra-specific
karyotype variation (Bulatova et al. 2019). Ten species of
Sorex are united by a large metacentric X chromosome,
formed by the fusion of the X to a similarly sized auto-
some (Sharman 1956). In the best studied of these 10 spe-
cies, S. araneus, the ancestral and autosomal arms of the
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large X show distinct behaviors reflecting their origins.
The arm derived from the ancestral X exhibits X inac-
tivation in females and, during male meiosis, pairs to the
ancestral Y much earlier than the autosomal arm pairs to
its Y, homolog (Pack et al. 1993). Biased transmission of
metacentrics through increased spermatocyte survivability
has been documented for both autosomes and the X chro-
mosome in S. araneus (Searle et al. 1986; Wyttenbach et al.
1998; Fedyk and Chetnicki 2007). Borodin et al. (2019) sug-
gest that this biased transmission stems from disruption to
the telocentrics, with uneven asynapsis between the hetero-
morphic chromosomes.

Based on existing karyotype data (Fredga 1972; Murata
et al. 2016b), the Y-autosome translocation within the mon-
goose family (Herpestidae) presumably has two independent
origins, one in the common ancestor of Urva and Atilax
and another in Herpestes. While 2n (the diploid number of
chromosomes) is otherwise conserved in Urva and Atilax,
autosomes in Herpestes have undergone further rearrange-
ment. In Herpestes the ancestral Y arm of the fused sex chro-
mosome is readily identifiable (Fredga 1972), but in the Urva
and Atilax groups the Y translocation has only recently been
identified (Murata et al. 2016b) on account of its miniscule
size (Fredga 1965; Raman and Nanda 1982). Mirroring the
pattern in shrews, the ancestral Y portion is at the distal end
of an autosome, and in spermatogenesis both the ancestral X
and X, only associate with their respective homologs during
pachytene (Murata et al. 2016b).

In contrast, the black muntjac (Muntiacus crinifrons),
which has an X-autosome fusion, exhibits a large inversion
on the Y, that limits recombination with the autosomal arm
of the fused X (Yang et al. 1995). While the X-autosome fu-
sion is shared with two other muntjac species (Wurster and
Benirschke 1970; Soma et al. 1987), the inversion is unique to
M. crinifrons (Yang et al. 19935). Strikingly, the M. crinifrons
Y, shows patterns of degeneration similar to a typical Y
chromosome (Zhou et al. 2008), making it an ideal system
for studying the origins of Y chromosomes (e.g. Yin et al.
2021). X-autosome fusions are also observed in the tufted
deer (Elaphodus cephalophus), a close relative of muntjacs
that is polymorphic for the ancestral XX/XY and an XYY,
system, and is characterized by large, variable heterochro-
matin expansions on the sex chromosomes (Shi et al. 1991;
Cao et al. 2005).

Secondary sex-autosome fusions.

Karyotype diversity is a long-recognized feature of
Bovidae, a family characterized by numerous Robertsonian
translocations between autosomes. Furthermore, X
chromosomes may vary in centromere position, heterochro-
matin domains, and by which autosomes they are fused to
(Robinson et al. 1998; Robinson and Ropiquet 2011). Two
bovid lineages possess contrasting variant sex chromosomes,
with members of tribe Tragelaphini sharing a Y-autosome
translocation as a synapomorphy (Rubes et al. 2008), and
species within the genera Awntilope, Eudorcas, Gazella,
and Nanger being united by a shared X-autosome fusion
(Cernohorska et al. 2015). Furthermore, both lineages con-
tain a small number of species in which the unmodified sex
chromosome has also fused to an autosome. In Eudorcas
gazelles, the E. thomsoni X and Y are each fused to homologs
of the same chromosome, giving the appearance of an XX/
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XY sex chromosome system, whereas the E. rufifrons X
and Y are fused to different autosomes (Vassart et al. 19935;
Cernohorska et al. 2015).

But wait, there’s more! Complex sex-autosome fusions.

Some karyotypes appear particularly prone to rearrangements
involving the sex chromosomes, which could indicate mul-
tiple bouts of sex chromosome drive and subsequent reso-
lution. Two genera of rodents in Gerbillinae, Gerbillus and
Taterillus, are prime examples. Several species of Gerbillus
have markedly large sex chromosomes, as the X and Y have
each fused to one homolog in a pair of autosomes (Fig.
3b; Viegas-Péquignot et al. 1982; Aniskin et al. 2006). The
giant X of Gerbillus gerbillus is distinguished by a second
autosomal fusion, whereas the two Y chromosomes in this
species are the product of Y fission; both carry part of the
original Y fused to a different autosome (Fig. 3b; Wahrman
et al. 1983). Similarly, in Taterillus, West African species are
differentiated from their East African relatives by a pair of
autosomes translocated to both sex chromosomes, as well as
a second autosomal translocation to the opposite end of the X
(Volobouev and Granjon 1996; Dobigny et al. 2002). The an-
cestral sex chromosomes are separated from their autosomal
arms by large, species-specific expansions of heterochromatin
(Dobigny et al. 2004).

A similar pattern is observed in the spectacled hare-wallaby
(Lagorchestes conspicillatus). Tts unusual sex chromosome
constitution, X, X, X, X /X X Y, looks similar to a Y-autosome
fusion, but is in fact the result of three rearrangements of un-
known order (Martin and Hayman 1966; Hayman and Sharp
1981). Two homologs in an autosomal pair are fused to both
the X and Y, the latter of which has fused to a second au-
tosome and occupies the centromeric region of the resulting
compound chromosome. There is no association between the
ancestral X and Y components of the compound chromosomes
during male meiosis (Hayman and Sharp 1981).

Within primates, sex-autosome translocations are a feature
of three genera of Platyrrhine monkeys: Aotus, Callimico, and
Alouatta. Species with variant sex chromosomes in Aotus and
Callimico have simple Y-autosome translocations (Dumas et
al. 2007; Menezes et al. 2010), but the more distantly related
howler monkeys (Alouatta) display population-specific varia-
tioninsex chromosome karyotype and atleast two independent
Y-autosome translocation events (Lima and Seudnez 1991; de
Oliveira et al. 2002; Solari and Rahn 2005; Steinberg et al.
2014). Curiously, the two Y-autosome fusions have each led
to loss of autosomal material in some species, while in others
this material is presumed to remain as microchromosomes
(Steinberg et al. 2014). Meiotic drive is among the recently
proposed explanations for this remarkable sex chromosome
diversity, although available data are insufficient to support
any particular hypothesis (Steinberg et al. 2022). Whereas the
XX/XY system is highly conserved in Catarrhine monkeys,
a single species (Trachypithecus cristatus) has been identified
with a reciprocal translocation between the Y and an auto-
some (Bigoni et al. 1997). Difficulties in obtaining specimens
notwithstanding, these primates are prime candidates for un-
derstanding the dynamics of sex-autosome fusions.

Phyllostomid batsexhibitastaggeringamountofsexchromo-
some diversity. The genus Carollia is united by an X-autosome
fusion (Baker et al. 1989; Pieczarka et al. 2005; Noronha
et al. 2009). Within the subfamily Stenodermatinae, a series of
rearrangements between autosomes and sex chromosomes are

suspected. Artibeus fruit bats are characterized by fusion of
an autosome to the distal end of a metacentric X, as are their
close relatives in the genus Dermanura (Baker 1973; Noronha
et al. 2010; Rodrigues et al. 2003). To add to this complexity,
some species of Dermanura and South American populations
of D. cinerea have an additional Y-autosome fusion, restoring
the appearance of an XX/XY system (Baker 1973; Hsu et al.
1986; Noronha et al. 2010). This same X-autosome translo-
cation is found in other genera in the Vampyressina group,
which can be broadly distinguished by a Y-autosome fusion
with two alternate morphologies (Gomes et al. 2016). The
composite Y is either acrocentric, as seen in Platyrrhinus,
Vampyrodes, Vampyriscus, and Chiroderma, or metacentric,
as in Uroderma (Pieczarca et al. 2013; Gomes et al. 2016).
Furthermore, a second autosome has translocated to the met-
acentric composite Y in Mesophyla, and the autosomal arm
of the composite X has fissioned in Vampyressa (Gomes et al.
2016).

Many of these genera are speciose and only a small subset
of species have been karyotyped, so genus-level descriptions
may well fail to capture the extent of sex-linked varia-
tion. Moreover, most of the sex chromosome diversity of
phyllostomid bats is only described at the karyotypic level.
Comparative genomics would likely uncover undescribed
sex chromosome variants in this group, and would ad-
vance understanding of the mechanisms and evolutionary
consequences of such lability in sex chromosome structure.

A final example of note is the naked-soled conyrat
(Reithrodon typicus), a South American cricetid rodent. Sex
chromosomes vary geographically in this species; Argentinian
populations have standard XY chromosomes whereas
Brazilian populations harbor distinct X- and Y-autosome
fusions. Uruguayan populations appear to share the
X-autosome fusion with the Brazilian form but have appar-
ently lost the ancestral Y chromosome (Freitas et al. 1983;
Ortells et al. 1988). However, given the limitations of cyto-
genetic visualization techniques of the time, whether the Y
is truly lost or was too small to be detected (e.g. after a re-
duction in heterochromatin content), remains an open ques-
tion. Crosses between geographic karyomorphs of R. typicus
would be useful for investigating the meiotic fates of different
sex chromosome morphologies and their role in speciation.

Just why are there so many sex-autosome fusions?

Sex-autosome fusions in mammals are associated with a
suite of deleterious effects, including meiotic malsegregation
and sterility, the silencing of autosomal genes by X inacti-
vation, and conflicting replication times (White et al. 1998;
Ashley 2002). Sex-autosome fusions are nonetheless clearly
tolerated in many species where these ill effects are presum-
ably mitigated. This is likely achieved by the physical separa-
tion of the two chromosome arms through the accumulation
and expansion of heterochromatin (as in taterills; Dobigny
et al. 2004) or other highly repetitive elements (as in Mus
minutoides: Veyrunes et al. 2004; Colomina et al. 2017) such
as telomeres and centromeres. It stands to reason that if mei-
otic polarity in a species favors metacentric chromosomes,
then sex-autosome fusions may become fixed in spite of their
deleterious potential.

Models of sexually antagonistic selection predict that
Y-autosome fusions should be more common than X-autosome
fusions (Charlesworth and Charlesworth 1980), though this
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may require both deleterious fusions and biased mutation
rates or sex ratios (Pennell et al. 2015). While Y-autosome
fusions are more common in both fish (Kitano and Peichel
2012) and reptiles (Pennell et al. 2015), both X and Y sex-
autosome fusions are similarly common in mammals (White
1973; Yoshida and Kitano 2012; Table 1).

Centromere drive and meiotic polarity provide compel-
ling explanations for the emergence and maintenance of sex-
autosome fusions in mammals. Highly repetitive sequences,
particularly at centromeres, are associated with biased seg-
regation during oogenesis (Pardo-Manuel de Villena and
Sapienza 2001; Didion et al. 20135; Iwata-Otsubo et al. 2017).
The probability that a chromosome preferentially segregates
to the egg rather than the polar body appears to be a function
of centromere strength, where greater strength refers to the
centromere’s ability to recruit more kinetochore proteins and
associations with spindle fibers (Chmatal et al. 2014; Akera
etal. 2017; Iwata-Otsubo et al. 2017; Kumon et al. 2021). The
number and strength of centromeres can therefore be modi-
fied by the fusion and fission of chromosomes (Chmatal et al.
2014). In a taxon where meiotic polarity favors metacentrics
but the X chromosome is telocentric, one X may gain a trans-
mission advantage over its homolog by forming a metacen-
tric via fusion to an autosome (Yoshida and Kitano 2012).
As in Chmatal et al. (2014), relative centromere strength can
be quantified by staining for centromeric and microtubule-
recruiting proteins.

Y-autosome fusions would presumably be unaffected
by centromere strength as the meiotic spindle is symmetric
during spermatogenesis (i.e. both products of both divisions
are retained). However, given that Y chromosomes may
tolerate fusion well (Cech and Peichel 2016), Y-autosome
fusions could still accumulate in karyotypes with telocentric
autosomes. Indeed, X-autosome fusions are found in mam-
malian species with primarily metacentric karyotypes while
Y-autosome fusions occur in species with more telocentric
chromosomes (Yoshida and Kitano 2012).

Meiotic drive during spermatogenesis may also favor sex-
autosome fusions. As postulated in S. araneus (Borodin et al.
2019), partial and uneven asynapsis between a metacentric
and a pair of telocentrics can systematically lead to differen-
tial germ cell death. Where this occurs in the heterogametic
sex, sex-autosome fusions should be associated with biased
sex ratios. From the perspective of an autosome fused to
the X chromosome, meiotic polarity allows it to benefit by
reaching the egg more frequently or by being in the rarer sex
if the Y is driving (Bull and Charnov 1988).

While sex-autosome fusions do not appear to change the
underlying mechanisms of sex determination, they exhibit
a degree of diversity that is underappreciated in mammals.
Given the lineage-specific, and in some cases population-
specific, nature of meiotic polarity, it seems unlikely that ei-
ther spermatogenic or oogenic drive can wholly explain the
maintenance of sex-autosome translocations. Genera like
Gerbillus, Tragelaphus, and Dermanura, in which all species
share a sex-autosome fusion and some have acquired an addi-
tional sex-autosome fusion, provide ideal systems with which
to identify signatures of meiotic drive. If meiotic drive underlies
the fixation of sex-autosome fusions, taxa with serial, complex
fusions may reflect cycles of repeated drive and suppression as
sex chromosomes vie for transmission. While driving elements
are notoriously difficult to observe without access to crosses
between divergent populations, their influence on deleterious
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sex-autosome fusions could be inferred from biased sex ratios
and signatures of selective sweeps (Didion et al. 2016). In the
case of centromere drive, one would expect to see reduced vari-
ation around driving centromeres (Hurst 2022), and the associ-
ation of X-autosome fusions with metacentric karyotypes and
Y-autosome fusions with telocentric karyotypes (Yoshida and
Kitano 2012). The mechanisms behind centromeric drive are in-
creasingly well understood (reviewed in Kumon and Lampson
2022), and long read sequencing technologies should make
it feasible to assemble centromeric regions more accurately
and interrogate the repetitive sequences therein. Identification
of differences in centromere size and rate of repeat evolution
in taxa with both ancestral X and Y chromosomes and sex-
autosome fusions, such as members of Alouatta (Steinberg et
al. 2014) and phyllostomid bats (Gomes et al. 2016), would be
suggestive of meiotic drive.

X andY fission

In addition to sex-autosome fusions, X X,Y or XYY, sex
chromosome systems can theoretically also be the product of
sex chromosome fission, as seen in some insects (Blackmon
et al. 2017). However, fissions appear to be substantially rarer
in mammals. We identified three described instances of sex
chromosome fission: Y fission in the lesser Egyptian gerbil
(G. gerbillus; Wahrman et al. 1983; see above and Fig. 3b)
and the swamp wallaby (Wallabia bicolor; Toder et al. 1997),
and X fission in a population of the Indomalayan long-tailed
climbing mouse (Vandeleuria oleraceus; Sharma and Raman
1972). In W. bicolor, chromosome painting revealed that au-
tosomal material had fused to both the ancestral X and Y
chromosomes, followed by a fission of the Y chromosome
within the pseudoautosomal region, forming an XX/XY Y,
system (Toder et al. 1997). In contrast, while V. oleraceus is
canonically XX/XY (Prakash and Aswathanarayana 1976),
apparent fission of the X chromosome in the north Indian
subspecies V. 0. oleraceus has yielded an X X X /X X)Y con-
figuration (Sharma and Raman 1972; Raman and Sharma
1976; Romanenko and Volobouev 2012).

In a meiotic drive framework, fissioned sex chromosomes
should stem from the same processes as fused sex
chromosomes; in a population where meiotic polarity favors
telocentrics, a metacentric chromosome could preferen-
tially bias its own transmission through fission (Yoshida and
Kitano 2012). While this holds true for autosomes (Pardo-
Manuel de Villena and Sapienza 2001; Blackmon et al. 2019),
sex chromosome fission in mammals is comparatively rare.
Fissions may be rarer in general because both fragments need
to maintain functional centromeres. Moreover, the fact that
W. bicolor has an otherwise metacentric karyotype (Toder
et al. 1997) suggests that meiotic drive would favor the main-
tenance of metacentric sex chromosomes, especially as the fis-
sion was preceded by sex-autosome fusions. The pattern is
similar in G. gerbillus; primarily metacentric autosomes and
two sex-autosome fusions followed by a sex chromosome
fission (Wahrman et al. 1983). However, V. oleraceus has
an evenly mixed karyotype of metacentrics and telocentrics
(Prakash and Aswathanarayana 1976), which could suggest a
recent shift in meiotic polarity.

Y-loss and X-Y fusions

Complete loss of the Y chromosome is rare in mammals
(Table 1) and should involve transfer of at least some
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ancestral Y genes to the X, turnover in sex-determining loci,
or both. The Tokudaia group has three spiny rat species,
two of which (T. tokunoshimensis, T. osimensis) are XO/XO
(Honda et al. 1978; Endo et al. 2008). The Okinawa spiny rat
(T. muenninki) is XX/XY, with neo-X and neo-Y chromosomes
resulting from sex-autosome fusions, and several autosomal
genes on the neo-Y show signs of degeneration (Murata et al.
2015). Whereas T. tokunoshimensis and T. osimensis have lost
Sry (Arakawa et al. 2002), in T. muenninki Sry is amplified to
over 70 mostly pseudogenized copies (Murata et al. 2010).

Of the five species of Ellobius mole voles, one (E. fuscopallis)
retains the ancestral XX/XY system. Ellobius lutescens has
lost the Y and is XO/XO. While most ancestral Y-linked genes,
including Sry, are not detected in E. lutescens (Just et al. 2007
Matveevsky et al. 2017), at least two have been translocated
to the X chromosome (Mulugeta et al. 2016). The remaining
three species (E. alaicus, E. talpinus, and E. tancrei) also lack
the Y chromosome but are XX/XX (Matveevsky et al. 2017,
Bakloushinskaya and Matveevsky 2018). In E. talpinus, the
two X chromosomes appear to be homologous in that they
share identical G-banding patterns and are fully synapsed in
oogenesis (Kolomiets et al. 2010). However, X chromosome
synapsis in spermatogenesis is incomplete in E. talpinus and
E. tancrei (Kolomiets et al. 2010; Matveevsky et al. 2016; Gil-
Fernandez et al. 2021). The lone X in E. lutescens is unpaired
during meiosis (Kolomiets et al. 1991).

The mandarin vole, Lasiopodomys mandarinus, is an unu-
sual case that maintains a neo-Y chromosome in the apparent
absence of either the ancestral Y chromosome, or transloca-
tion of Sry to the X (Chen et al. 2008; Gladkikh et al. 2016).
It remains to be determined whether the ancestral Y is truly
lost or is an undetected part of the neo-Y. Four karyomorphs
have been identified (Wang et al. 2003): X, YX X individuals
produce sperm, while X X X X YX,, and X XXX,
individuals produce eggs. Lasiopodomys mandarinus is
widely distributed (Tai et al. 2001) and is a model system for
studying sociality, paternal care, and monogamy (e.g. Tai et al.
2001; Jia et al. 2009), making it ideal for studying crosses
between karyomorphs. Crossbreeding and chromosome
painting experiments by Romanenko et al. (2020) lead to the
suggestion that X,, which is formed by a translocation be-
tween X, and X, is oocyte-promoting. These crosses also re-
vealed biased transmission of sex chromosomes (Romanenko
et al. 2020). Roy (2021) ascribed this to Y chromosome drive
and a sex-ratio adjusting imprinting mechanism, though re-
cent models suggest this is only plausible when drive is much
weaker than that observed in L. mandarinus (Saunders et al.
2022).

Finally, the unusual sex chromosome constitution of the
creeping vole (Microtus oregoni) was described over 50
years ago (Matthey 1956; Ohno et al. 1963, 1966). Detailed
cytological studies revealed that both sexes are gonosomic
mosaics, meaning that the diploid number differs be-
tween somatic and germline cells (Ohno et al. 1963, 1966).
Females carry one X in the soma but mitotic non-disjunction
in the germline results in all oocytes transmitting an X
(Ohno et al. 1966). Males were described as XY in the soma
but YO in the germline (Ohno et al. 1963). However, re-
cent genomic analysis in M. oregoni revealed additional sex
chromosomal twists (Couger et al. 2021). Despite substan-
tial differences in size, both sex chromosomes are largely
X-derived and both carry a full complement of Y-derived
genes due to ancestral X-Y fusion. X chromosome dosage

in somatic cells is reversed between the sexes, such that X
chromosome inactivation occurs in XX males but not in
XO females. Surprisingly, there is no evidence for differen-
tial degeneration of ancestral Y genes shared between the
two chromosomes, despite the fact that the larger X is only
transmitted through females. Notably, both X chromosomes
carry multiple functional copies of Sry (Couger et al. 2021);
the mechanism by which fertile ovaries develop remains to
be determined.

These systems represent case studies in Y chromosome loss
or reconfiguration and, to varying degrees, the translocation
of sex-determining loci to the X chromosome. Recent work
in Drosophila affinis provides a model under which such rad-
ical changes in sex chromosome identity and function might
result from meiotic drive (Ma et al. 2022). In D. affinis, a
driving X chromosome (X*®) initially produces female-biased
sex ratios by increasing Y chromosome non-disjunction
such that sperm are either aneuploid with no sex chromo-
some or carry X®®. Unlike most Drosophila, D. affinis males
that lack a Y chromosome are viable, and so XO and XRO
males can persist. Because X*®-carrying sperm are inviable,
XSRQO individuals only produce males, thus restoring sex-ratio
parity (Ma et al. 2022). It is straightforward to imagine a sim-
ilar chain of events in mammals, whereby Y chromosomes are
lost in response to meiotic drive. Ellobius, with XX, XY, and
XO males, is a particularly appealing system for testing for
signs of X-linked drive and evaluating the costs of rescuing
vs. sacrificing the Y chromosome. Tokudaia provide a system
for contrasting possible fates of the Y chromosome and its
genes (Murata et al. 2016a), but the restricted distribution
and endangered status of spiny rat species make them difficult
study organisms.

The fluidity of Y chromosomes

If sexual conflict is a primary driver of the evolution of het-
eromorphic sex chromosomes, Y chromosomes should be
havens for male-benefit genes, released from the sexually
antagonistic constraints of a genome shared with females.
Moreover, if male-limited evolution in Drosophila can neg-
atively affect female development after just 30 generations
(Rice 1998), surely a chromosome that has been male-limited
for many millions of generations should be toxic in a female
developmental environment. From this perspective, the fact
that there are at least 14 species of mammals in which some
Y-bearing individuals are fertile females, and at least seven
more in which previously Y-linked genes are permanently
embedded in the shared genome (Table 1), is quite remark-
able. We consider these two flavors of “shared-Y” systems in
turn and identify open questions in both.

Oocyte-promoting X chromosomes: driving or driven to it?
Polymorphic sex chromosome systems have multiple in-
dependent origins in arvicoline, sigmodontine, and murine
rodents (Table 1). Although the details vary between species,
one or more X chromosome variant (designated X*) that
promotes ovarian development in Y-bearing individuals is
common to all (Fagundes et al. 2000; Hoekstra and Edwards
2000; Ortiz et al. 2009; Veyrunes et al. 2010). Consequently,
at least three sex chromosome genotypes produce females
(XX, XX*, and X*Y), and females that carry X* produce
an excess of daughters. Considering that selection should act
against strongly biased sex ratios (Hamilton 1967), and that
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an expected 25% of X*Y females” gametes will be lost due
to YY inviability, the independent establishment and main-
tenance of X* chromosomes in multiple species is puzzling.

Crossing experiments and mathematical modeling in
a subset of species point to a central role for meiotic drive
in the establishment of X*, thus providing at least partial
solutions to this puzzle. In both the African pygmy mouse (M.
minutoides) and the Arctic lemming (Dicrostonyx torquatus),
Y chromosome drive in males is evident in crosses to females
that do not carry X* (Gileva 1987; Saunders et al. 2022;
see also Bull and Bulmer 1981; Bulmer 1988). Added twists
include apparent reversal of male Y chromosome drive in
African pygmy mouse crosses with X*Y females (“condi-
tional drive,” Saunders et al. 2022), and Y chromosome elim-
ination from the germline in X*Y wood lemming (Myopus
schisticolor) females (Fredga et al. 1972).

Does Y chromosome drive explain the establishment of X*?
In other words, are these oocyte-promoting X chromosomes
an adaptive compensatory response to male-biased sex
ratios? Or are X* chromosomes themselves drivers that gain
advantage by neutralizing Y chromosomes (e.g. Bull and
Bulmer 1981)? The highly female-skewed sex ratio in wood
lemmings (Bengtsson 1977) that results from complete trans-
mission bias of X* over Y seems consistent with the latter
interpretation (but see McVean and Hurst 1996). However,
in a population genetic model for the history of X* in the
African pygmy mouse, an oocyte-promoting X or a driving
Y evolve first with equal probability (Saunders et al. 2022).
Finally, the fact that X*Y females out-reproduce females with
two X chromosomes in at least three species (African pygmy
mouse, Saunders et al. 2014; wood lemming, Fredga et al.
2000, 2005; Azara’s grass mouse [Akodon azarae], Espinosa
and Vitullo 1996) suggests that selection contributes to the
maintenance, and possibly the establishment, of X*.

X-Y integration: when sex chromosomes collide

In contrast to polymorphic X* systems, in which some egg-
producing individuals thrive in the presence of a Y chromo-
some, at least nine species carry Y to X translocations that are
likely fixed at the species level. The scale of these translocations
from the male-limited genome ranges from X-linked copies of
Sry in Cabrera’s vole (Microtus cabrerae), to intervals that
contain multiple Y-derived genes in mole voles (Ellobius)
and Rytkyt spiny rats (Tokudaia), to X chromosomes that
carry most or all of the gene content of the ancestral Y in
the creeping vole (M. oregoni) (Bullejos et al. 1997; Arakawa
et al. 2002; Murata et al. 2012, 2016a; Mulugeta et al. 2016;
Matveevsky et al. 2017; Bakloushinskaya and Matveevsky
2018; Couger et al. 2021). Whereas the ancestral Y chro-
mosome is retained in Cabrera’s vole and in one mole vole
and one spiny rat species (E. fuscocapillus and T. muenninki,
respectively), the other mole voles and spiny rats, and the
creeping vole, have all lost an independently segregating Y
chromosome.

It is hard to envision a role for either natural selection
or sexually antagonistic selection in the fixation of any of
these variant systems. The transfer of Y chromosome genes
to the shared genome must always precede loss of the en-
tire chromosome, so an initial benefit to males seems unlikely.
Meanwhile, females are exposed to the outcome of long-term
evolution in a male developmental environment without
the proposed compensatory effects of a Y-neutralizing X*
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chromosome. In the Transcaucasian mole vole (E. lutescens),
the four Y-derived genes detected to date appear to have
male-limited expression, suggesting active suppression in fe-
male genomes (Mulugeta et al. 2016). However, at least two
Y-derived genes in the creeping vole are expressed in both
sexes (Couger et al. 2021) and the genes and tissues evaluated
in both studies are too limited to exclude the possibility of
additional expression in females. Multi-tissue transcriptome
data in these and other “shared Y species will be essential to
understanding the short term evolutionary response of female
genomes to male-limited evolution. As to gaining insight into
the processes that moved these systems from their ancestral to
present day states, parameterization of mathematical models
with species-specific empirical data (e.g. Saunders et al. 2022)
is a promising approach.

Other avenues for future work

First, there is currently little support for sexual conflict as a
primary driver of Y chromosomal transitions into the shared
genome. However, many of the systems described above have
increased opportunity for intralocus sexual conflict, in some
cases potentiated by newly evolved asymmetries in the distri-
bution of sex chromosomes between the sexes. For example,
in all systems with oocyte-promoting X* chromosomes, the Y
chromosome spends part of its time in female environments.
Assuming that the effects of previously male-limited genes on
female fertility are neutral at best, does relaxed selection in
females increase the frequency of Y haplotypes that reduce
male fitness? Population genetic tests for Y-linked differentia-
tion between XY males and X*Y females would be a logical
first step to addressing this question. Species with among pop-
ulation differences in the frequency of X* (e.g. M. minutoides,
Veyrunes et al. 2013) provide natural experiments in which
the effect of females on Y chromosome evolution could be
calibrated to the frequency of X*.

Second, the X-linked mutations that promote ovarian de-
velopment in Y-bearing individuals have yet to be identified
in any species. Just as in the origin of a new sex-determining
locus on an autosome, local suppression of recombination
between X* and the original X could facilitate the accumu-
lation of female-benefit alleles on X*. Intriguingly, the X*
chromosomes of M. minutoides and M. schisticolor each
carry a cytologically visible deletion and inversion relative to
the ancestral X (Liu et al. 2001; Veyrunes et al. 2010). The
inverted intervals likely hold the key to the oocyte-promoting
effect of X* chromosomes in these species.

Master switch or tuning knobs?

Loss of Sry, the transcription factor that initiates testis
development in most XY individuals, is convincingly
demonstrated in just six species in our dataset: the mandarin
vole (Lasiopodomys mandarinus), two species of Ryukyl
spiny rat (Tokudaia tokushimensis and T. osimensis), and
three species of mole vole (E. tancrei, E. talpinus, and E.
lutescens). In all three genera, long-term efforts to find an al-
ternative “master switch” for testis development eliminated
several genes as probable candidates but found none that
were (Just et al. 2007; Wang et al. 2009; Chen et al. 2011;
Kuriowa et al. 2011). However, a recent landmark study in
T. osimensis identified a small (17 kb) male-limited duplication
on the same autosome as Sox9, the direct target of Sry in the
testis-determining cascade (Terao et al. 2022). The duplicated
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interval contains a cis-regulatory element that, when bound
by a yet to be identified transcription factor, upregulates Sox9
(Terao et al. 2022). Whereas there is more work to be done to
map the complete molecular pathway of testis development
in T. osimensis, the study is groundbreaking in identifying a
new sex-determining locus, and therefore a newly arisen sex
chromosome, in a mammal.

We will probably never know whether selection to limit sex-
ually antagonistic alleles to the sex they benefit drove recom-
bination suppression around Sry on the proto-Y chromosome
of therian mammals. But the case of T. osimensis provides
an opportunity to test the classic model for sex chromosome
evolution (e.g. Fisher 1931; Charlesworth 1991) in real time.
Given the increasing feasibility of producing chromosome-
level genome assemblies with long read sequencing, we an-
ticipate that discoveries of sex-limited intervals in other
mammals with variant sex chromosomes will be forthcoming.
The other Sry-less spiny rat, T. tokushimensis, is a particularly
strong candidate. The fact that the new activator of testis de-
velopment in T. osimensis is a cis-regulatory element is yet
another illustration of the power of small regulatory changes
to shift evolutionary trajectories (e.g. Wray 2007; Wittkopp
and Kalay 2012), in this case facilitating the loss of an entire
chromosome.

Does nothing in sex chromosome evolution make
sense except in light of conflict?

As evidence for sexual antagonism as the primary driver
of suppressed recombination on sex chromosomes remains
scarce (Wright et al. 2016), non-conflict hypotheses as to why
sex chromosomes evolve have received increased attention.
Neutral processes, such as drift, neutral divergence (Ironside
2010; Ponnikas et al. 2018; Jeffries et al. 2021), and hetero-
zygote advantage (Ponnikas et al. 2018; Jay et al. 2022), have
been proposed as avenues by which rearrangements capture
sex-determining alleles and become fixed in a population. Sex-
specific selection, specifically where ecological factors act to
influence sex-limited traits, can impact sex chromosome evo-
lution (Meisel 2022). Local adaptation can also shape what
alleles get fixed in a population by favoring linkage through
suppressed recombination (Guerrero and Kirkpatrick 2014;
Meisel 2022). Recently, a non-conflict model driven by reg-
ulation of gene expression was developed, in which degen-
eration and dosage compensation coevolve, and proto-sex
chromosomes diverge, shortly after the initial inversion event
that captures a sex-determining allele (Lenormand et al.
2020; Lenormand and Roze 2022). Subsequent sexually an-
tagonistic effects result from dosage compensation required
by the heterogametic sex to regulate gene expression and not
a sex-specific optimum as is invoked by the sexual conflict
model of sex chromosome evolution.

The stage at which dosage compensation evolves is different
between the contemporary sexual conflict model (Wright
et al. 2016) and the regulatory divergence model of sex chro-
mosome evolution (Lenormand et al. 2020; Lenormand and
Roze 2022). In a sexual conflict framework, dosage compen-
sation occurs after recombination has been suppressed and as
a consequence of Y (or W) genes that have degenerated be-
cause of the lack of recombination between non-homologous
sex chromosomes (Charlesworth 1978; Disteche 2012). In
contrast, dosage compensation is the cause of suppressed re-
combination in the regulatory divergence model as regulatory

regions continually evolve to balance the expression of Y- and
X-linked alleles and maladaptive recombinants are selected
against. Examining variant sex chromosome systems could
provide insights into the early stages of sex chromosome
evolution, particularly to determine whether or not dosage
compensation plays a primary role in suppressing recombina-
tion between proto-sex chromosomes. In the Okinawa Island
spiny rat, T. muenninki, the neo-X and neo-Y do not harbor
any apparent chromosomal rearrangements between them,
yet there is suppressed recombination (Murata et al. 20135,
2016a). The lack of rearrangements could provide key insights
into how regulatory evolution, particularly dosage compensa-
tion, could maintain suppressed recombination between the
diverging sex chromosomes. In T. osimensis, a new autosomal
sex-determining locus is exhibiting signs of sex-specific regu-
latory divergence (Terao et al. 2022). Given that cytogenetics
shows that the autosome harboring the sex-specific region has
yet to degenerate in the male-limited interval compared to its
autosomal homolog (Koyabashi et al. 2007, 2008; Nakamura
et al. 2007), it could be fruitful to compare levels of gene ex-
pression between this male-limited interval and its autosomal
homolog. Reduced expression on the male-specific interval in
the absence of degeneration would provide preliminary evi-
dence for the regulatory divergence model.

More broadly, the non-conflict regulatory evolution model
predicts dosage compensation should evolve concurrently
with low levels of degeneration in early stages of sex chro-
mosome evolution (Muyle et al. 2022). While studies that
examine both regulatory evolution and coding sequence de-
generation in young sex chromosomes are currently lacking,
there is evidence that gene-silencing can facilitate Y degener-
ation in Drosophila (Zhou and Bachtrog 2012) and that Y
degeneration is a progressive process in some Rumex species
with young sex chromosomes (Beaudry et al. 2017). Much
of our understanding about the role of Y degeneration and
dosage compensation in eutherian sex chromosomes comes
from ancient systems (Charlesworth 1996; Disteche 2012),
but focusing on the regulatory processes in variant eutherian
sex chromosome systems provides the opportunity to observe
a more recent slice of evolutionary time. Even with the op-
portunity to study sex chromosomes at early stages, it can
be difficult to come to a single conclusion (e.g. Charlesworth
et al. 2023; Fong et al. 2023). We look forward to seeing what
the large number of variant sex chromosomes in mammals
may add to our understanding of sex chromosome evolution.

Conclusions

Here, we emphasize the role of genomic and sexual conflict in
the evolution of variant sex chromosome systems, with meiotic
drive and sexual antagonism acting as the primary forces un-
derlying the emergence and fixation of variants. Mammalian
sex chromosomes and sex-determining mechanisms clearly
have the potential to vary dramatically, and the true extent of
that variation is severely understudied outside of select taxa
(e.g. Steinberg et al. 2014; Romanenko et al. 2020; Saunders
et al. 2022). Several sex chromosome variants are popula-
tion specific, and further efforts to cytologically describe
mammal species are necessary lest we risk missing variation
assumed to be absent. Because the majority of variant systems
we cataloged are characterized at the cytological level only,
it is entirely possible that genomic evaluation of less-studied
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systems will reveal sex-linked variation that was invisible to
cytology. Indeed, the advent of long read genomics offers new
opportunities to detect signs of conflict in centromeres and
repetitive elements, and even to reveal new sex-determining
mechanisms (e.g. Peichel et al. 2020; Couger et al. 2021). We
have highlighted systems that would be ideal for collabora-
tive work between cytologists, genomicists, and theoreticians
to unpack the evolution of sex chromosomes. Finally, having
shown the extent to which norms and “rules” around mam-
malian sex chromosomes are bent and broken, we encourage
consideration of more precise and inclusive language in
describing these systems.

Supplementary material

Supplementary material is available at Journal of Heredity
online.
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