
Journal of Heredity, 2024, XX, 1–24
https://doi.org/10.1093/jhered/esae031
Advance access publication 4 June 2024
Invited Reviews and Perspectives

Received September 16, 2023;  Accepted June 1, 2024

Invited Reviews and Perspectives

The role of conflict in the formation and maintenance of 
variant sex chromosome systems in mammals
Jonathan J. Hughes*, , German Lagunas-Robles , Polly Campbell*,

Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, United States
*Corresponding authors: Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, United States. Email: 
hughesjonjames@gmail.com (JJH); Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, United States. 
Email: polly.campbell@ucr.edu (PC)

Corresponding Editor:  Lila Fishman

Abstract 
The XX/XY sex chromosome system is deeply conserved in therian mammals, as is the role of Sry in testis determination, giving the impression 
of stasis relative to other taxa. However, the long tradition of cytogenetic studies in mammals documents sex chromosome karyotypes that 
break this norm in myriad ways, ranging from fusions between sex chromosomes and autosomes to Y chromosome loss. Evolutionary conflict, 
in the form of sexual antagonism or meiotic drive, is the primary predicted driver of sex chromosome transformation and turnover. Yet conflict-
based hypotheses are less considered in mammals, perhaps because of the perceived stability of the sex chromosome system. To address this 
gap, we catalog and characterize all described sex chromosome variants in mammals, test for family-specific rates of accumulation, and consider 
the role of conflict between the sexes or within the genome in the evolution of these systems. We identify 152 species with sex chromosomes 
that differ from the ancestral state and find evidence for different rates of ancestral to derived transitions among families. Sex chromosome-
autosome fusions account for 79% of all variants whereas documented sex chromosome fissions are limited to three species. We propose that 
meiotic drive and drive suppression provide viable explanations for the evolution of many of these variant systems, particularly those involving 
autosomal fusions. We highlight taxa particularly worthy of further study and provide experimental predictions for testing the role of conflict and 
its alternatives in generating observed sex chromosome diversity.
Key words: dosage compensation, mammals, meiotic drive, regulatory evolution, sex chromosomes, sexual antagonism

Introduction
The therian sex chromosomes originated in the common 
ancestor of marsupial and placental mammals when a tran-
scription factor on an autosome acquired a testis-determining 
function (Koopman et al. 1991; Potrzebowski et al. 2008; 
Veyrunes et al. 2008). More than 150 million years later, the 
ancestral gene content of the X chromosome is largely pre-
served, whereas progressive suppression of recombination 
with the X catalyzed massive genetic and structural decay on 
the Y. Consistent with evolutionarily early degeneration of 
the Y chromosome, extant placental mammals carry subsets 
of the same 18 ancestral Y chromosome genes and loss of 
Sry as the first gene in the testis-determining cascade is rare 
(Bellott et al., 2014; Cortez et al. 2014).

Conflict, whether between the sexes or within the ge-
nome, is a widely invoked driver of sex chromosome evolu-
tion with a compelling body of theoretical support (Fisher 
1931; Charlesworth and Charlesworth 1980; Bull 1983; 
Rice 1987; Charlesworth 1991; van Doorn and Kirkpatrick 
2007; Úbeda et al. 2015; Patten 2018). These conflict-based 
models apply to any system with genetic sex determination, 
including mammals. However, the unusual longevity of the 
mammalian sex chromosomes and the apparent decrepitude 

of the Y motivated theoretical focus on stasis (van Doorn and 
Kirkpatrick 2007; van Doorn 2013) and decay (Charlesworth 
and Charlesworth 2000; Bachtrog 2008) rather than conflict 
(but see Blackmon and Brandvain 2017). Even brief intrigue 
over imminent Y chromosome loss in our own species was 
quickly dismantled by data showing that Y degeneration had 
decelerated to a point that made disintegration of the en-
tire chromosome exceedingly unlikely (Aitken and Marshall 
Graves 2002; Graves 2004; Hughes et al. 2005; Griffin 
2012). Given that signatures of conflict have proven hard 
to demonstrate in relatively young sex chromosome systems 
where they should be most evident (e.g. Wright et al. 2017; 
Charlesworth et al. 2021), an ancient sex chromosome system 
with decelerating decay seems unlikely to provide much in-
sight into conflict-driven evolution. Enforcing this view, the 
mammalian sex chromosomes are frequently referenced as 
the evolutionarily stable contrast to systems with recent or 
recurrent sex chromosome turnover (e.g. van Doorn and 
Kirkpatrick 2007; Veyrunes et al. 2008; Yoshida and Kitano 
2012; Kikuchi and Hamaguchi 2013; Graves 2016).

Here, we argue that the overall conservation of sex-
determining pathways and sex chromosome identity in 
mammals masks both considerable diversity in the ge-
netic and structural features of the sex chromosomes, and 
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flexibility in their distribution between the sexes. Much of 
the variation in mammalian sex chromosome systems was 
discovered and described by cytologists in the last century 
(e.g. Fredga 1970; Vorontsov et al. 1980) but remains under-
represented in modern evolutionary genomic studies. In an 
attempt to close this gap, we enumerate and categorize previ-
ously reported variants on the ancestral XX female, XY male 
system, and evaluate their taxonomic distribution. We discuss 
the evidence that conflict—between the sexes or within the 
genome in the form of meiotic drive—played a major role in 
the evolution of these variant sex chromosome systems. We 
close with a brief discussion of non-conflict-based models for 
sex chromosome evolution.

Although humans are not discussed herein, this is a paper 
about the diversity of sex chromosomes and sex determination 
in mammals and is therefore broadly relevant to the diversity 
of sexual and gender identities in our own species. We aim to 
use inclusive language (e.g. avoiding terms like “feminizing” and 
“masculinizing”) but found it hard to write about sex chromo-
some evolution without using the terms “male” and “female,” 
thus enforcing a binary view of sex. In this, we sacrifice inclu-
sivity for the sake of simplicity. We emphasize, however, that the 
diversity of sex chromosome genotypes in mammals provides a 
strong argument against both the immutability of chromosomal 
sex, and the non-intersection of “male” and “female” develop-
mental pathways (e.g. Nelson and Kriegsfeld 2017).

Methods
Data collection
We generated an initial list of mammals with variant sex 
chromosomes using literature reviews on the topic (Fredga 
1970; Vorontsov et al. 1980; Romanenko and Volobouev 
2012; Saunders and Veyrunes 2021). Once we identified spe-
cies of interest, we searched mammalian karyotype datasets 
(Pardo-Manuel de Villena and Sapienza 2001; Graphodatsky 
et al. 2020) for evidence of variant sex chromosomes in 
other members of their respective genera or families. We 
also searched the literature for additional species with var-
iant sex chromosome systems using Google Scholar, with 
the search terms “novel sex chromosomes mammals,” “sex 
chromosome fusion mammals,” “sex autosome translocation 
mammals,” “sex chromosome rearrangement mammals,” 
“sex chromosome loss mammals,” and iterations thereof 
replacing “mammals” with families and genera of interest. We 
retained only species for which a published karyotype could 
be sourced but did not otherwise evaluate the strength of ev-
idence supporting each of the sex chromosome variants we 
cataloged. Species names were brought into alignment with 
the Mammal Diversity Database v1.11 (2023). Monotremes 
were excluded because their sex chromosomes are independ-
ently derived relative to Theria (Veyrunes et al. 2008). We 
note that restricting ourselves to published karyotypes in-
evitably means that we will undercount the number of var-
iant sex chromosome systems in some taxa. For example, all 
members of the tribe Tragelaphini (spiral-horned antelopes) 
are inferred to have the same Y-autosome fusion, but karyo-
type data is not available for all species (Rubes et al. 2008). 
The degree to which different families have been studied and 
cytogenetically characterized is also likely to be inconsistent, 
due to variation in the level of scientific interest in a taxon 
and the availability of specimens.

Taxonomic distribution of variant sex 
chromosomes
The number of species with novel sex chromosome sys-
tems varies between mammalian lineages, but it is unclear 
whether these variants are over- or underrepresented in 
a given taxon. Most examples of mammalian species with 
variant sex chromosomes, especially those that are not 
sex-autosome fusions, are found in rodents (Saunders and 
Veyrunes 2021). However, as Rodentia comprises the largest 
order of mammals, this pattern may be simply a function 
of species richness. To compare the rates at which novel sex 
chromosome configurations arise in mammalian families, 
we used the ratebytree function (Revell et al. 2018) in the 
R package phytools v1.5.1 (Revell 2012). We sampled 100 
trees from the posterior distribution of the node-dated 
mammal phylogeny from Upham et al. (2019) and provided 
the ratebytree function with family-level subsets and char-
acter codes indicating whether or not each species had an 
XX/XY system. We included all families comprised of three 
or more species with at least one novel sex chromosome con-
figuration and one XX/XY system. ratebytree fits two Mk 
models (Lewis 2001); one where all trees have the same 
transition rate, and another where transition rates can vary 
between trees (Revell 2012). The two models are compared 
with a log-likelihood ratio test. We first fit a unidirectional 
model where the transition rate from variant systems to XX/
XY is set to zero. This should reflect the biological reality 
that no transitions from a variant system to the ancestral 
XX/XY configuration have been observed. This allowed us 
to infer whether the rate at which novel sex chromosomes 
evolve varies significantly between families and whether the 
inferred rate is sensitive to tree topology. We additionally 
fit both the unidirectional model and an equal rates model 
to the maximum clade credibility tree from Upham et al. 
(2019), the results of which are reported in Supplementary 
Table 1. We note that, because some families are closely re-
lated (e.g. Cricetidae and Muridae) and may share the same 
rate due to common ancestry, the inferred rates are likely 
not independent. Furthermore, the inferred rates do not ac-
count for different categories of sex chromosome variants 
that evolved within genera, as in Tokudaia (Ryūkyū spiny 
rats) and Ellobius (mole voles).

Species were assumed to be XX/XY unless published evi-
dence of a variant sex chromosome system could be found. 
However, erroneously labeling species as XX/XY due to lack 
of available evidence for a variant sex chromosome system 
could inflate estimated transition rates. Conversely, if a species 
incorrectly assigned XX/XY is closely related to other species 
assigned XX/XY (correctly or incorrectly) then rates will be 
deflated. Because restricting the entire analysis to species with 
known sex chromosome systems would introduce a family-
specific sampling bias that would distort the relative rates be-
tween families, we evaluated the effect of XX/XY assignment 
uncertainty by limiting our analysis to species with published 
sex chromosome karyotypes from three families with high 
estimated transition rates: Atelidae, Bovidae, and Herpestidae.

Results
Categorizing variant sex chromosome systems
We identify nine broad categories of variant sex chromosomes 
in mammals (Table 1), accounting for 152 species in 58 
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genera and 20 families with published karyotypes (Fig. 1). 
These numbers are certainly conservative as many species of 
mammals remain unkaryotyped and we exclude taxa inferred 
to have variant sex chromosomes but lacking cytogenetic 
confirmation. Moreover, population-level variation in sex 
chromosome configuration (e.g. Ortells et al. 1988; Ventura 
et al. 2011) is presumably underestimated. As a rough bench-
mark for the sampling breadth of mammal karyotypes, the 
Atlas of Mammalian Chromosomes (Graphodatsky et al. 
2020) contains approximately 1,100 karyotypes out of the 
almost 6,500 species of mammals (Burgin et al. 2018). The 
three most common categories involve fusions between one or 
more sex chromosome and autosomes. Such rearrangements 
are thought to be highly deleterious and so should be rare 
(Ashley et al. 2002; Barasc et al. 2012; White et al. 1998; 
but see Charlesworth and Charlesworth 1980; Guerrero and 
Kirkpatrick 2014). While we use the general term fusion, most 
of these cases are Robertsonian translocations (Schubert and 
Lysak 2011). Three categories are represented by only one 
or two species each: X-Y fusion and X- or Y-fission. Finally, 
we identify three categories that involve modification of an-
cestral sex-determining pathways: gene amplification, Y chro-
mosome loss, and oocyte-promoting X (X*) chromosomes.

Rate estimation
Under our simplified approach of assigning sex chromosomes 
as either variant or not, we find evidence of family-specific 
differences in rate of variant sex chromosome evolution 
(Fig. 2; Supplementary Table 1). Under an equal rate model on 
the maximum clade credibility tree (Upham et al. 2019), the 
highest transition rates were found in Zapodidae (5.6411), 
Atelidae (0.1347), and Aotidae (0.1000), while the lowest rate 
was in Cercopithecidae (0.0030), a family with 125 species of 
which one has variant sex chromosomes. Zapodidae’s obvi-
ously elevated rate relative to other families is likely an over-
estimate stemming from the small number of species in the 
family (five species, two of which have variant sex chromosome 
systems). After repeating the analysis without Zapodidae, we 
found that family-specific rates still show a better fit than 
a common-rate model (Equal rate model. Likelihood ratio: 
80.4501. P = 0). The unidirectional rate model, which should 
be more biologically realistic, also found family-specific rates 
to fit better than a common-rate (Likelihood ratio: 96.4545. 
P = 0). While the order of families from highest to lowest 
rate is mostly the same, the three fastest rates in the unidirec-
tional model are inferred in Atelidae (0.0827), Herpestidae 
(0.066), and Zapodidae (0.0629)—note that Zapodidae has 
an inferred rate far more in line with the other families than 
under the equal rate model. When examining the distribution 
of rates from across the set of 100 credible phylogenies, the 
inferred transition rates are inconsistent in the five families 
with the highest rates, whereas most families of mammals 
have low inferred rates that are stable across different tree 
topologies (Fig. 2). Thus, our results suggest that mammal 
families have lineage-specific rates at which they acquire var-
iant sex chromosomes. While most variant sex chromosome 
systems are found in rodents, this does not correspond to 
higher inferred transition rates in families within Rodentia.

Restricting the analysis to species with published sex chro-
mosome karyotypes in Atelidae, Bovidae, and Herpestidae 
(Supplementary Fig. 1; Supplementary Table 2), had different 
effects on each family that reflect gaps in both sampling 

completeness in the phylogeny used and our knowledge of sex 
chromosome karyotypes. For Herpesitdae, the estimated dis-
tribution of transition rates was reduced but remained quali-
tatively high relative to other families (Fig. 2; Supplementary 
Fig. 1). The inferred transition rates for Bovidae were also 
lower, which is likely a consequence of species that would 
be XX/XY but are missing from the phylogeny. The biggest 
difference in estimated transition rates between our two 
approaches was seen in Atelidae, in which the removal of taxa 
with unconfirmed sex chromosome karyotype lead to a much 
lower estimated transition rate—though still higher than the 
majority of families in the analysis with all species included—
and a narrower range of estimated rates. Taken together, these 
results reinforce the difficulties in estimating accurate rate 
values without comprehensive sex chromosome karyotypes 
and given topological uncertainty in phylogenies. Despite 
our two approaches yielding inconsistent specific transition 
rate estimates, both suggest that several families of mammals 
show elevated transition rates from XX/XY chromosomes to 
variant sex chromosome systems.

Our model neglects additional parameters that are worthy 
of future consideration. For example, different families are 
likely to have their own baseline rate of chromosome fu-
sion and fission, which would naturally influence the rate of 
sex-autosome fusions. Similarly, chromosome morphology 
(Blackmon et al. 2019) and the number of chromosomes in 
a karyotype (Anderson et al. 2020) will directly impact the 
probability that a given fusion involves a sex chromosome. 
The rate at which chromosome fusions accumulate is also 
likely influenced by generation time. However, high transi-
tion rates in taxa with very different generation times (i.e. 
primates and rodents) suggest minimal effects of this param-
eter on the current dataset.

Discussion
Review of the literature on mammalian sex chromosomes 
revealed over 150 species with variant sex chromosome 
systems. Analysis of the distribution of these variants 
across therian mammals indicates that a propensity for sex 
chromosomes to diverge from the traditionally ultra-stable 
XX/XY configuration is taxonomically widespread. Here, 
we consider the evolution and maintenance of representative 
systems in light of two types of conflict: between the sexes 
and within the genome in the form of meiotic drive. We begin 
with a brief summary of the conflict-based models for sex 
chromosome evolution and then discuss the major types of 
variant sex chromosome systems in turn. In closing, we out-
line non-conflict-based models for sex chromosome evolu-
tion, with particular focus on a recently proposed model that 
emphasizes the role of regulatory divergence in the origin 
of heteromorphic sex chromosomes (Lenormand et al. 2020; 
Lenormand and Roze 2022).

Models of conflict-driven sex chromosome 
evolution
What drives the evolution of suppressed recombination 
between homologous chromosomes? This is the ques-
tion that all models for the evolution of heteromorphic sex 
chromosomes are obliged to address. Nearly a century ago, 
Fisher interpreted the excess of Y chromosome-linked color 
genes in guppies (Poecilia reticulata) as a consequence of 
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selection to limit sexually selected genes to the sex they ben-
efit (Fisher 1931). This hypothesis seeded an elegant body of 
theory on the role of sexual conflict in sex chromosome ev-
olution (Charlesworth and Charlesworth 1980; Bull 1983; 
Rice 1987; Charlesworth 1991; van Doorn and Kirkpatrick 
2007). The key features of these models are, 1) linkage be-
tween a sex-determining locus and one or more sexually an-
tagonistic loci (loci that benefit one sex but harm the other), 
and 2) selection for suppressed recombination that restricts 
the interval to the sex it benefits, thereby resolving intralocus 
sexual conflict. The presence or gain of additional sexually 
antagonistic loci on the same chromosome favors recombina-
tion suppression over a larger interval, ultimately leading to 
sex-limitation of an entire chromosome (Charlesworth 1991). 
Importantly, these models apply equally well to the origin of 
new sex chromosomes, and to neo-sex chromosome systems, 

in which an autosomal fusion to an existing sex chromosome 
generates a new sex-linked part of the genome. In both cases, 
gene movement to the Y chromosome resolves male-benefit 
sexual antagonism whereas the asymmetric distribution of 
X chromosomes between males and females makes the X a 
predicted hotspot for recurrent bouts of sexually antagonistic 
evolution (Rice 1984).

Novel sex-determining loci and sex chromosome 
configurations may also achieve fixation through meiotic drive, 
the biased transmission of a locus (Pardo-Manuel de Villena 
and Sapienza 2001; Kozielska et al. 2010). Meiotic drive sensu 
stricto manifests during oogenesis where the structural features 
of a chromosome, such as its centromere (Chmátal et al. 2014; 
reviewed in Clark and Akera 2021; Kumon and Lampson 
2022; Talbert and Henikoff 2022), may aid in its transmis-
sion to the ovum rather than the polar body (Rhoades 1942; 

Fig. 1. Family level phylogeny of Mammalia, with families containing species that have variant sex chromosomes indicated by purple text. Monotremes 
are in blue to denote the independent origin of their sex chromosomes relative to therian mammals. The categories of sex chromosome system found 
in each family are indicated by colored circles on the tips.
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Sandler and Novitski 1957). More generally, the term has come 
to apply to any form of non-Mendelian inheritance, including 
malsegregation or non-disjunction of the nondriving locus, or 
the death of sperm lacking the driver (Presgraves et al. 1997). 
As meiotic drivers are selfish elements whose biased transmis-
sion tends to impose steep fitness costs (Fishman and Saunders 
2008; Lindholm et al. 2016), genomic responses that restore 
equilibrium by suppressing the driver are expected, as are fur-
ther mutations to “strengthen” the force of drive, leading to 
cycles of conflict (Jaenike 1999; Hall 2004). This is especially 
true for sex chromosomes, which are more likely to develop 
drivers than autosomes (Frank 1991; Hurst and Pomiankowski 
1991), and where failure by the genome to respond to drive can 
lead to extinction from warped sex ratios and the elimination 
of one sex (Hamilton 1967; Jaenike 2001; Holman et al. 2015). 
Depending on the fitness cost of a driving X, an autosome that 
acquires a new sex-determining locus may invade (Werren and 
Beukeboom 1998; Kozielska et al. 2010), a mechanism that 
has been proposed in two mole species, Talpa europaea and T. 
occidentalis (McVean and Hurst 1996). We exclude these from 
our dataset as there is no associated change in sex chromo-
some configuration, but XY individuals of both species have 
testes and XX individuals possess ovotestes, which have both 
a typically functioning ovarian section and a testicular section 
(Jiménez et al. 2023).

Drivers are often associated with structural variants 
(Charlesworth and Hartl 1978; Jaenike 2001; Lyon 2003) 
and changes in chromosome morphology (Pardo-Manuel de 
Villena and Sapienza 2001; Yoshida and Kitano 2012), which 
facilitates the reduced recombination necessary to form het-
eromorphic sex chromosomes. Beyond the proposed role of 
meiotic drive in the origin of sex chromosomes (Úbeda et  al. 
2015), it has been invoked to explain shifts in karyotype 
morphology (Pardo-Manuel de Villena and Sapienza 2001; 
Blackmon et al. 2019) and, by extension, the evolution of 
neo-sex chromosomes (Yoshida and Kitano 2012) and other 
variant sex systems (Helleu et al. 2015).

X-autosome and Y-autosome fusions
The most common forms of variant sex chromosomes in 
mammals are those resulting from fusions between a sex 
chromosome and an autosome. These fusions, which are 
achieved primarily by Robertsonian translocation (Schubert 
and Lysak 2011), account for 79% of all our observations 
(Table 1). Typically, an X-autosome fusion generates an 
XY1Y2 sex chromosome system, with Y2 representing the re-
maining unfused autosomal homolog, whereas Y-autosome 
fusions lead to an X1X2Y condition (Fig. 3a). In therian 
mammals with published karyotypes, we identified 49 species 

Fig. 2. Density plot showing the inferred transition rate from XX/XY to a variant sex chromosome system in families of mammals. Rate distributions 
are inferred by fitting a unidirectional model to 100 trees sampled from the posterior distribution of Upham et al. (2019). Numbers in brackets after 
family names indicate the number of species with variant sex chromosome systems as a fraction of the total number of species in the family that 
are present in the phylogeny. Two families of therian mammals with variant systems are excluded: Choloepodidae (2/2) and Thlyacomyidae (1/1). 
Results from fitting both the equal rates and unidirectional rate models to the maximum clade credibility tree from Upham et al. (2019) are reported 
in Supplementary Table 1.
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across 21 genera with an X-autosome fusion, 27 species 
across 13 genera with a Y-autosome fusion, and 44 species 
in 20 genera with both X- and Y-autosome fusions. Of the 54 
unique genera, 18 had only X-autosome fusions and 10 had 
only Y-autosome fusions.

Several mechanisms have been proposed to explain the fix-
ation of sex-autosome fusions. Classic theory predicts that 
sexually antagonistic loci on an autosome are released from 
constraint by translocation to either the X or Y (Charlesworth 
and Charlesworth 1980; Rice 1984). More recently, it 
was suggested that meiotic drive can fix sex-autosome 
translocations when chromosome morphology biases trans-
mission rate (Yoshida and Kitano 2012). This preferential 
transmission of one chromosome morphology over another 
is termed meiotic polarity. Genetic drift (Lande 1985) and au-
tosomal loci with heterozygote advantage (Charlesworth and 
Wall 1999) may also contribute.

Single sex-autosome fusions.
 Some of the best-known examples of X-autosome 
translocations in mammals are those of shrews in the genus 
Sorex, which exhibits remarkable inter- and intra-specific 
karyotype variation (Bulatova et al. 2019). Ten species of 
Sorex are united by a large metacentric X chromosome, 
formed by the fusion of the X to a similarly sized auto-
some (Sharman 1956). In the best studied of these 10 spe-
cies, S. araneus, the ancestral and autosomal arms of the 

large X show distinct behaviors reflecting their origins. 
The arm derived from the ancestral X exhibits X inac-
tivation in females and, during male meiosis, pairs to the 
ancestral Y much earlier than the autosomal arm pairs to 
its Y2 homolog (Pack et al. 1993). Biased transmission of 
metacentrics through increased spermatocyte survivability 
has been documented for both autosomes and the X chro-
mosome in S. araneus (Searle et al. 1986; Wyttenbach et al. 
1998; Fedyk and Chętnicki 2007). Borodin et al. (2019) sug-
gest that this biased transmission stems from disruption to 
the telocentrics, with uneven asynapsis between the hetero-
morphic chromosomes.

Based on existing karyotype data (Fredga 1972; Murata 
et al. 2016b), the Y-autosome translocation within the mon-
goose family (Herpestidae) presumably has two independent 
origins, one in the common ancestor of Urva and Atilax 
and another in Herpestes. While 2n (the diploid number of 
chromosomes) is otherwise conserved in Urva and Atilax, 
autosomes in Herpestes have undergone further rearrange-
ment. In Herpestes the ancestral Y arm of the fused sex chro-
mosome is readily identifiable (Fredga 1972), but in the Urva 
and Atilax groups the Y translocation has only recently been 
identified (Murata et al. 2016b) on account of its miniscule 
size (Fredga 1965; Raman and Nanda 1982). Mirroring the 
pattern in shrews, the ancestral Y portion is at the distal end 
of an autosome, and in spermatogenesis both the ancestral X 
and X2 only associate with their respective homologs during 
pachytene (Murata et al. 2016b).

In contrast, the black muntjac (Muntiacus crinifrons), 
which has an X-autosome fusion, exhibits a large inversion 
on the Y2 that limits recombination with the autosomal arm 
of the fused X (Yang et al. 1995). While the X-autosome fu-
sion is shared with two other muntjac species (Wurster and 
Benirschke 1970; Soma et al. 1987), the inversion is unique to 
M. crinifrons (Yang et al. 1995). Strikingly, the M. crinifrons 
Y2 shows patterns of degeneration similar to a typical Y 
chromosome (Zhou et al. 2008), making it an ideal system 
for studying the origins of Y chromosomes (e.g. Yin et al. 
2021). X-autosome fusions are also observed in the tufted 
deer (Elaphodus cephalophus), a close relative of muntjacs 
that is polymorphic for the ancestral XX/XY and an XY1Y2 
system, and is characterized by large, variable heterochro-
matin expansions on the sex chromosomes (Shi et al. 1991; 
Cao et al. 2005).

Secondary sex-autosome fusions.
 Karyotype diversity is a long-recognized feature of 
Bovidae, a family characterized by numerous Robertsonian 
translocations between autosomes. Furthermore, X 
chromosomes may vary in centromere position, heterochro-
matin domains, and by which autosomes they are fused to 
(Robinson et al. 1998; Robinson and Ropiquet 2011). Two 
bovid lineages possess contrasting variant sex chromosomes, 
with members of tribe Tragelaphini sharing a Y-autosome 
translocation as a synapomorphy (Rubes et al. 2008), and 
species within the genera Antilope, Eudorcas, Gazella, 
and Nanger being united by a shared X-autosome fusion 
(Cernohorska et al. 2015). Furthermore, both lineages con-
tain a small number of species in which the unmodified sex 
chromosome has also fused to an autosome. In Eudorcas 
gazelles, the E. thomsoni X and Y are each fused to homologs 
of the same chromosome, giving the appearance of an XX/

Fig. 3. Outcomes of sex chromosome–autosome fusions in mammals. 
a) An X-autosome fusion produces an XY1Y2 system; a Y-autosome 
fusion produces an X1X2Y system. b) The fusion of a homologous pair 
of autosomes to both X and Y explains the large sex chromosomes of 
gerbils in the clade, Gerbillus (sensu Ndiaye et al. 2016). In G. gerbillus, 
a second pair of autosomes are fused to the X and Y, and fission of 
the ancestral part of the Y chromosome produced an XY1Y2 system 
(Wahrman et al. 1983). Dashed lines indicate that transitional sex 
chromosome states were likely involved. A, autosome.
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XY sex chromosome system, whereas the E. rufifrons X 
and Y are fused to different autosomes (Vassart et al. 1995; 
Cernohorska et al. 2015).

But wait, there’s more! Complex sex-autosome fusions.
 Some karyotypes appear particularly prone to rearrangements 
involving the sex chromosomes, which could indicate mul-
tiple bouts of sex chromosome drive and subsequent reso-
lution. Two genera of rodents in Gerbillinae, Gerbillus and 
Taterillus, are prime examples. Several species of Gerbillus 
have markedly large sex chromosomes, as the X and Y have 
each fused to one homolog in a pair of autosomes (Fig. 
3b; Viegas-Péquignot et al. 1982; Aniskin et al. 2006). The 
giant X of Gerbillus gerbillus is distinguished by a second 
autosomal fusion, whereas the two Y chromosomes in this 
species are the product of Y fission; both carry part of the 
original Y fused to a different autosome (Fig. 3b; Wahrman 
et al. 1983). Similarly, in Taterillus, West African species are 
differentiated from their East African relatives by a pair of 
autosomes translocated to both sex chromosomes, as well as 
a second autosomal translocation to the opposite end of the X 
(Volobouev and Granjon 1996; Dobigny et al. 2002). The an-
cestral sex chromosomes are separated from their autosomal 
arms by large, species-specific expansions of heterochromatin 
(Dobigny et al. 2004).

A similar pattern is observed in the spectacled hare-wallaby 
(Lagorchestes conspicillatus). Its unusual sex chromosome 
constitution, X1X1X2X2/X1X2Y, looks similar to a Y-autosome 
fusion, but is in fact the result of three rearrangements of un-
known order (Martin and Hayman 1966; Hayman and Sharp 
1981). Two homologs in an autosomal pair are fused to both 
the X and Y, the latter of which has fused to a second au-
tosome and occupies the centromeric region of the resulting 
compound chromosome. There is no association between the 
ancestral X and Y components of the compound chromosomes 
during male meiosis (Hayman and Sharp 1981).

Within primates, sex-autosome translocations are a feature 
of three genera of Platyrrhine monkeys: Aotus, Callimico, and 
Alouatta. Species with variant sex chromosomes in Aotus and 
Callimico have simple Y-autosome translocations (Dumas et 
al. 2007; Menezes et al. 2010), but the more distantly related 
howler monkeys (Alouatta) display population-specific varia-
tion in sex chromosome karyotype and at least two independent 
Y-autosome translocation events (Lima and Seuánez 1991; de 
Oliveira et al. 2002; Solari and Rahn 2005; Steinberg et al. 
2014). Curiously, the two Y-autosome fusions have each led 
to loss of autosomal material in some species, while in others 
this material is presumed to remain as microchromosomes 
(Steinberg et al. 2014). Meiotic drive is among the recently 
proposed explanations for this remarkable sex chromosome 
diversity, although available data are insufficient to support 
any particular hypothesis (Steinberg et al. 2022). Whereas the 
XX/XY system is highly conserved in Catarrhine monkeys, 
a single species (Trachypithecus cristatus) has been identified 
with a reciprocal translocation between the Y and an auto-
some (Bigoni et al. 1997). Difficulties in obtaining specimens 
notwithstanding, these primates are prime candidates for un-
derstanding the dynamics of sex-autosome fusions.

Phyllostomid bats exhibit a staggering amount of sex chromo-
some diversity. The genus Carollia is united by an X-autosome 
fusion (Baker et al. 1989; Pieczarka et al. 2005; Noronha  
et al. 2009). Within the subfamily Stenodermatinae, a series of 
rearrangements between autosomes and sex chromosomes are 

suspected. Artibeus fruit bats are characterized by fusion of 
an autosome to the distal end of a metacentric X, as are their 
close relatives in the genus Dermanura (Baker 1973; Noronha 
et al. 2010; Rodrigues et al. 2003). To add to this complexity, 
some species of Dermanura and South American populations 
of D. cinerea have an additional Y-autosome fusion, restoring 
the appearance of an XX/XY system (Baker 1973; Hsu et al. 
1986; Noronha et al. 2010). This same X-autosome translo-
cation is found in other genera in the Vampyressina group, 
which can be broadly distinguished by a Y-autosome fusion 
with two alternate morphologies (Gomes et al. 2016). The 
composite Y is either acrocentric, as seen in Platyrrhinus, 
Vampyrodes, Vampyriscus, and Chiroderma, or metacentric, 
as in Uroderma (Pieczarca et al. 2013; Gomes et al. 2016). 
Furthermore, a second autosome has translocated to the met-
acentric composite Y in Mesophyla, and the autosomal arm 
of the composite X has fissioned in Vampyressa (Gomes et al. 
2016).

Many of these genera are speciose and only a small subset 
of species have been karyotyped, so genus-level descriptions 
may well fail to capture the extent of sex-linked varia-
tion. Moreover, most of the sex chromosome diversity of 
phyllostomid bats is only described at the karyotypic level. 
Comparative genomics would likely uncover undescribed 
sex chromosome variants in this group, and would ad-
vance understanding of the mechanisms and evolutionary 
consequences of such lability in sex chromosome structure.

A final example of note is the naked-soled conyrat 
(Reithrodon typicus), a South American cricetid rodent. Sex 
chromosomes vary geographically in this species; Argentinian 
populations have standard XY chromosomes whereas 
Brazilian populations harbor distinct X- and Y-autosome 
fusions. Uruguayan populations appear to share the 
X-autosome fusion with the Brazilian form but have appar-
ently lost the ancestral Y chromosome (Freitas et al. 1983; 
Ortells et al. 1988). However, given the limitations of cyto-
genetic visualization techniques of the time, whether the Y 
is truly lost or was too small to be detected (e.g. after a re-
duction in heterochromatin content), remains an open ques-
tion. Crosses between geographic karyomorphs of R. typicus 
would be useful for investigating the meiotic fates of different 
sex chromosome morphologies and their role in speciation.

Just why are there so many sex-autosome fusions?
 Sex-autosome fusions in mammals are associated with a 
suite of deleterious effects, including meiotic malsegregation 
and sterility, the silencing of autosomal genes by X inacti-
vation, and conflicting replication times (White et al. 1998; 
Ashley 2002). Sex-autosome fusions are nonetheless clearly 
tolerated in many species where these ill effects are presum-
ably mitigated. This is likely achieved by the physical separa-
tion of the two chromosome arms through the accumulation 
and expansion of heterochromatin (as in taterills; Dobigny 
et al. 2004) or other highly repetitive elements (as in Mus 
minutoides: Veyrunes et al. 2004; Colomina et al. 2017) such 
as telomeres and centromeres. It stands to reason that if mei-
otic polarity in a species favors metacentric chromosomes, 
then sex-autosome fusions may become fixed in spite of their 
deleterious potential.

Models of sexually antagonistic selection predict that 
Y-autosome fusions should be more common than X-autosome 
fusions (Charlesworth and Charlesworth 1980), though this 
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may require both deleterious fusions and biased mutation 
rates or sex ratios (Pennell et al. 2015). While Y-autosome 
fusions are more common in both fish (Kitano and Peichel 
2012) and reptiles (Pennell et al. 2015), both X and Y sex-
autosome fusions are similarly common in mammals (White 
1973; Yoshida and Kitano 2012; Table 1).

Centromere drive and meiotic polarity provide compel-
ling explanations for the emergence and maintenance of sex-
autosome fusions in mammals. Highly repetitive sequences, 
particularly at centromeres, are associated with biased seg-
regation during oogenesis (Pardo-Manuel de Villena and 
Sapienza 2001; Didion et al. 2015; Iwata-Otsubo et al. 2017). 
The probability that a chromosome preferentially segregates 
to the egg rather than the polar body appears to be a function 
of centromere strength, where greater strength refers to the 
centromere’s ability to recruit more kinetochore proteins and 
associations with spindle fibers (Chmátal et al. 2014; Akera 
et al. 2017; Iwata-Otsubo et al. 2017; Kumon et al. 2021). The 
number and strength of centromeres can therefore be modi-
fied by the fusion and fission of chromosomes (Chmátal et al. 
2014). In a taxon where meiotic polarity favors metacentrics 
but the X chromosome is telocentric, one X may gain a trans-
mission advantage over its homolog by forming a metacen-
tric via fusion to an autosome (Yoshida and Kitano 2012). 
As in Chmátal et al. (2014), relative centromere strength can 
be quantified by staining for centromeric and microtubule-
recruiting proteins.

Y-autosome fusions would presumably be unaffected 
by centromere strength as the meiotic spindle is symmetric 
during spermatogenesis (i.e. both products of both divisions 
are retained). However, given that Y chromosomes may 
tolerate fusion well (Cech and Peichel 2016), Y-autosome 
fusions could still accumulate in karyotypes with telocentric 
autosomes. Indeed, X-autosome fusions are found in mam-
malian species with primarily metacentric karyotypes while 
Y-autosome fusions occur in species with more telocentric 
chromosomes (Yoshida and Kitano 2012).

Meiotic drive during spermatogenesis may also favor sex-
autosome fusions. As postulated in S. araneus (Borodin et al. 
2019), partial and uneven asynapsis between a metacentric 
and a pair of telocentrics can systematically lead to differen-
tial germ cell death. Where this occurs in the heterogametic 
sex, sex-autosome fusions should be associated with biased 
sex ratios. From the perspective of an autosome fused to 
the X chromosome, meiotic polarity allows it to benefit by 
reaching the egg more frequently or by being in the rarer sex 
if the Y is driving (Bull and Charnov 1988).

While sex-autosome fusions do not appear to change the 
underlying mechanisms of sex determination, they exhibit 
a degree of diversity that is underappreciated in mammals. 
Given the lineage-specific, and in some cases population-
specific, nature of meiotic polarity, it seems unlikely that ei-
ther spermatogenic or oogenic drive can wholly explain the 
maintenance of sex-autosome translocations. Genera like 
Gerbillus, Tragelaphus, and Dermanura, in which all species 
share a sex-autosome fusion and some have acquired an addi-
tional sex-autosome fusion, provide ideal systems with which 
to identify signatures of meiotic drive. If meiotic drive underlies 
the fixation of sex-autosome fusions, taxa with serial, complex 
fusions may reflect cycles of repeated drive and suppression as 
sex chromosomes vie for transmission. While driving elements 
are notoriously difficult to observe without access to crosses 
between divergent populations, their influence on deleterious 

sex-autosome fusions could be inferred from biased sex ratios 
and signatures of selective sweeps (Didion et al. 2016). In the 
case of centromere drive, one would expect to see reduced vari-
ation around driving centromeres (Hurst 2022), and the associ-
ation of X-autosome fusions with metacentric karyotypes and 
Y-autosome fusions with telocentric karyotypes (Yoshida and 
Kitano 2012). The mechanisms behind centromeric drive are in-
creasingly well understood (reviewed in Kumon and Lampson 
2022), and long read sequencing technologies should make 
it feasible to assemble centromeric regions more accurately 
and interrogate the repetitive sequences therein. Identification 
of differences in centromere size and rate of repeat evolution 
in taxa with both ancestral X and Y chromosomes and sex-
autosome fusions, such as members of Alouatta (Steinberg et 
al. 2014) and phyllostomid bats (Gomes et al. 2016), would be 
suggestive of meiotic drive.

X and Y fission
In addition to sex-autosome fusions, X1X2Y or XY1Y2 sex 
chromosome systems can theoretically also be the product of 
sex chromosome fission, as seen in some insects (Blackmon 
et al. 2017). However, fissions appear to be substantially rarer 
in mammals. We identified three described instances of sex 
chromosome fission: Y fission in the lesser Egyptian gerbil 
(G. gerbillus; Wahrman et al. 1983; see above and Fig. 3b) 
and the swamp wallaby (Wallabia bicolor; Toder et al. 1997), 
and X fission in a population of the Indomalayan long-tailed 
climbing mouse (Vandeleuria oleraceus; Sharma and Raman 
1972). In W. bicolor, chromosome painting revealed that au-
tosomal material had fused to both the ancestral X and Y 
chromosomes, followed by a fission of the Y chromosome 
within the pseudoautosomal region, forming an XX/XY1Y2 
system (Toder et al. 1997). In contrast, while V. oleraceus is 
canonically XX/XY (Prakash and Aswathanarayana 1976), 
apparent fission of the X chromosome in the north Indian 
subspecies V. o. oleraceus has yielded an X1X1X2/X1X2Y con-
figuration (Sharma and Raman 1972; Raman and Sharma 
1976; Romanenko and Volobouev 2012).

In a meiotic drive framework, fissioned sex chromosomes 
should stem from the same processes as fused sex 
chromosomes; in a population where meiotic polarity favors 
telocentrics, a metacentric chromosome could preferen-
tially bias its own transmission through fission (Yoshida and 
Kitano 2012). While this holds true for autosomes (Pardo-
Manuel de Villena and Sapienza 2001; Blackmon et al. 2019), 
sex chromosome fission in mammals is comparatively rare. 
Fissions may be rarer in general because both fragments need 
to maintain functional centromeres. Moreover, the fact that 
W. bicolor has an otherwise metacentric karyotype (Toder 
et al. 1997) suggests that meiotic drive would favor the main-
tenance of metacentric sex chromosomes, especially as the fis-
sion was preceded by sex-autosome fusions. The pattern is 
similar in G. gerbillus; primarily metacentric autosomes and 
two sex-autosome fusions followed by a sex chromosome 
fission (Wahrman et al. 1983). However, V. oleraceus has 
an evenly mixed karyotype of metacentrics and telocentrics 
(Prakash and Aswathanarayana 1976), which could suggest a 
recent shift in meiotic polarity.

Y-loss and X-Y fusions
Complete loss of the Y chromosome is rare in mammals 
(Table 1) and should involve transfer of at least some 
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ancestral Y genes to the X, turnover in sex-determining loci, 
or both. The Tokudaia group has three spiny rat species, 
two of which (T. tokunoshimensis, T. osimensis) are XO/XO 
(Honda et al. 1978; Endo et al. 2008). The Okinawa spiny rat  
(T. muenninki) is XX/XY, with neo-X and neo-Y chromosomes 
resulting from sex-autosome fusions, and several autosomal 
genes on the neo-Y show signs of degeneration (Murata et al. 
2015). Whereas T. tokunoshimensis and T. osimensis have lost 
Sry (Arakawa et al. 2002), in T. muenninki Sry is amplified to 
over 70 mostly pseudogenized copies (Murata et al. 2010).

Of the five species of Ellobius mole voles, one (E. fuscopallis) 
retains the ancestral XX/XY system. Ellobius lutescens has 
lost the Y and is XO/XO. While most ancestral Y-linked genes, 
including Sry, are not detected in E. lutescens (Just et al. 2007; 
Matveevsky et al. 2017), at least two have been translocated 
to the X chromosome (Mulugeta et al. 2016). The remaining 
three species (E. alaicus, E. talpinus, and E. tancrei) also lack 
the Y chromosome but are XX/XX (Matveevsky et al. 2017; 
Bakloushinskaya and Matveevsky 2018). In E. talpinus, the 
two X chromosomes appear to be homologous in that they 
share identical G-banding patterns and are fully synapsed in 
oogenesis (Kolomiets et al. 2010). However, X chromosome 
synapsis in spermatogenesis is incomplete in E. talpinus and 
E. tancrei (Kolomiets et al. 2010; Matveevsky et al. 2016; Gil-
Fernández et al. 2021). The lone X in E. lutescens is unpaired 
during meiosis (Kolomiets et al. 1991).

The mandarin vole, Lasiopodomys mandarinus, is an unu-
sual case that maintains a neo-Y chromosome in the apparent 
absence of either the ancestral Y chromosome, or transloca-
tion of Sry to the X (Chen et al. 2008; Gladkikh et al. 2016). 
It remains to be determined whether the ancestral Y is truly 
lost or is an undetected part of the neo-Y. Four karyomorphs 
have been identified (Wang et al. 2003): X1YX3X3 individuals 
produce sperm, while X1X2X3, X2YX3, and X1X1X3X3 
individuals produce eggs. Lasiopodomys mandarinus is 
widely distributed (Tai et al. 2001) and is a model system for 
studying sociality, paternal care, and monogamy (e.g. Tai et al.  
2001; Jia et al. 2009), making it ideal for studying crosses 
between karyomorphs. Crossbreeding and chromosome 
painting experiments by Romanenko et al. (2020) lead to the 
suggestion that X2, which is formed by a translocation be-
tween X1 and X3, is oocyte-promoting. These crosses also re-
vealed biased transmission of sex chromosomes (Romanenko 
et al. 2020). Roy (2021) ascribed this to Y chromosome drive 
and a sex-ratio adjusting imprinting mechanism, though re-
cent models suggest this is only plausible when drive is much 
weaker than that observed in L. mandarinus (Saunders et al. 
2022).

Finally, the unusual sex chromosome constitution of the 
creeping vole (Microtus oregoni) was described over 50 
years ago (Matthey 1956; Ohno et al. 1963, 1966). Detailed 
cytological studies revealed that both sexes are gonosomic 
mosaics, meaning that the diploid number differs be-
tween somatic and germline cells (Ohno et al. 1963, 1966). 
Females carry one X in the soma but mitotic non-disjunction 
in the germline results in all oocytes transmitting an X 
(Ohno et al. 1966). Males were described as XY in the soma 
but YO in the germline (Ohno et al. 1963). However, re-
cent genomic analysis in M. oregoni revealed additional sex 
chromosomal twists (Couger et al. 2021). Despite substan-
tial differences in size, both sex chromosomes are largely 
X-derived and both carry a full complement of Y-derived 
genes due to ancestral X-Y fusion. X chromosome dosage 

in somatic cells is reversed between the sexes, such that X 
chromosome inactivation occurs in XX males but not in 
XO females. Surprisingly, there is no evidence for differen-
tial degeneration of ancestral Y genes shared between the 
two chromosomes, despite the fact that the larger X is only 
transmitted through females. Notably, both X chromosomes 
carry multiple functional copies of Sry (Couger et al. 2021); 
the mechanism by which fertile ovaries develop remains to 
be determined.

These systems represent case studies in Y chromosome loss 
or reconfiguration and, to varying degrees, the translocation 
of sex-determining loci to the X chromosome. Recent work 
in Drosophila affinis provides a model under which such rad-
ical changes in sex chromosome identity and function might 
result from meiotic drive (Ma et al. 2022). In D. affinis, a 
driving X chromosome (XSR) initially produces female-biased 
sex ratios by increasing Y chromosome non-disjunction 
such that sperm are either aneuploid with no sex chromo-
some or carry XSR. Unlike most Drosophila, D. affinis males 
that lack a Y chromosome are viable, and so XO and XSRO 
males can persist. Because XSR-carrying sperm are inviable, 
XSRO individuals only produce males, thus restoring sex-ratio 
parity (Ma et al. 2022). It is straightforward to imagine a sim-
ilar chain of events in mammals, whereby Y chromosomes are 
lost in response to meiotic drive. Ellobius, with XX, XY, and 
XO males, is a particularly appealing system for testing for 
signs of X-linked drive and evaluating the costs of rescuing 
vs. sacrificing the Y chromosome. Tokudaia provide a system 
for contrasting possible fates of the Y chromosome and its 
genes (Murata et al. 2016a), but the restricted distribution 
and endangered status of spiny rat species make them difficult 
study organisms.

The fluidity of Y chromosomes
If sexual conflict is a primary driver of the evolution of het-
eromorphic sex chromosomes, Y chromosomes should be 
havens for male-benefit genes, released from the sexually 
antagonistic constraints of a genome shared with females. 
Moreover, if male-limited evolution in Drosophila can neg-
atively affect female development after just 30 generations 
(Rice 1998), surely a chromosome that has been male-limited 
for many millions of generations should be toxic in a female 
developmental environment. From this perspective, the fact 
that there are at least 14 species of mammals in which some 
Y-bearing individuals are fertile females, and at least seven 
more in which previously Y-linked genes are permanently 
embedded in the shared genome (Table 1), is quite remark-
able. We consider these two flavors of “shared-Y” systems in 
turn and identify open questions in both.

Oocyte-promoting X chromosomes: driving or driven to it?
 Polymorphic sex chromosome systems have multiple in-
dependent origins in arvicoline, sigmodontine, and murine 
rodents (Table 1). Although the details vary between species, 
one or more X chromosome variant (designated X*) that 
promotes ovarian development in Y-bearing individuals is 
common to all (Fagundes et al. 2000; Hoekstra and Edwards 
2000; Ortiz et al. 2009; Veyrunes et al. 2010). Consequently, 
at least three sex chromosome genotypes produce females 
(XX, XX*, and X*Y), and females that carry X* produce 
an excess of daughters. Considering that selection should act 
against strongly biased sex ratios (Hamilton 1967), and that 

D
ow

nloaded from
 https://academ

ic.oup.com
/jhered/advance-article/doi/10.1093/jhered/esae031/7687688 by Technical Services - Serials user on 09 July 2024



16 Hughes et al. Conflict and Variant Sex Chromosomes in Mammals

an expected 25% of X*Y females’ gametes will be lost due 
to YY inviability, the independent establishment and main-
tenance of X* chromosomes in multiple species is puzzling.

Crossing experiments and mathematical modeling in 
a subset of species point to a central role for meiotic drive 
in the establishment of X*, thus providing at least partial 
solutions to this puzzle. In both the African pygmy mouse (M. 
minutoides) and the Arctic lemming (Dicrostonyx torquatus), 
Y chromosome drive in males is evident in crosses to females 
that do not carry X* (Gileva 1987; Saunders et al. 2022; 
see also Bull and Bulmer 1981; Bulmer 1988). Added twists 
include apparent reversal of male Y chromosome drive in 
African pygmy mouse crosses with X*Y females (“condi-
tional drive,” Saunders et al. 2022), and Y chromosome elim-
ination from the germline in X*Y wood lemming (Myopus 
schisticolor) females (Fredga et al. 1972).

Does Y chromosome drive explain the establishment of X*? 
In other words, are these oocyte-promoting X chromosomes 
an adaptive compensatory response to male-biased sex 
ratios? Or are X* chromosomes themselves drivers that gain 
advantage by neutralizing Y chromosomes (e.g. Bull and 
Bulmer 1981)? The highly female-skewed sex ratio in wood 
lemmings (Bengtsson 1977) that results from complete trans-
mission bias of X* over Y seems consistent with the latter 
interpretation (but see McVean and Hurst 1996). However, 
in a population genetic model for the history of X* in the 
African pygmy mouse, an oocyte-promoting X or a driving 
Y evolve first with equal probability (Saunders et al. 2022). 
Finally, the fact that X*Y females out-reproduce females with 
two X chromosomes in at least three species (African pygmy 
mouse, Saunders et al. 2014; wood lemming, Fredga et al. 
2000, 2005; Azara’s grass mouse [Akodon azarae], Espinosa 
and Vitullo 1996) suggests that selection contributes to the 
maintenance, and possibly the establishment, of X*.

X-Y integration: when sex chromosomes collide
In contrast to polymorphic X* systems, in which some egg-
producing individuals thrive in the presence of a Y chromo-
some, at least nine species carry Y to X translocations that are 
likely fixed at the species level. The scale of these translocations 
from the male-limited genome ranges from X-linked copies of 
Sry in Cabrera’s vole (Microtus cabrerae), to intervals that 
contain multiple Y-derived genes in mole voles (Ellobius) 
and Ryūkyū spiny rats (Tokudaia), to X chromosomes that 
carry most or all of the gene content of the ancestral Y in 
the creeping vole (M. oregoni) (Bullejos et al. 1997; Arakawa 
et al. 2002; Murata et al. 2012, 2016a; Mulugeta et al. 2016; 
Matveevsky et al. 2017; Bakloushinskaya and Matveevsky 
2018; Couger et al. 2021). Whereas the ancestral Y chro-
mosome is retained in Cabrera’s vole and in one mole vole 
and one spiny rat species (E. fuscocapillus and T. muenninki, 
respectively), the other mole voles and spiny rats, and the 
creeping vole, have all lost an independently segregating Y 
chromosome.

It is hard to envision a role for either natural selection 
or sexually antagonistic selection in the fixation of any of 
these variant systems. The transfer of Y chromosome genes 
to the shared genome must always precede loss of the en-
tire chromosome, so an initial benefit to males seems unlikely. 
Meanwhile, females are exposed to the outcome of long-term 
evolution in a male developmental environment without 
the proposed compensatory effects of a Y-neutralizing X* 

chromosome. In the Transcaucasian mole vole (E. lutescens), 
the four Y-derived genes detected to date appear to have 
male-limited expression, suggesting active suppression in fe-
male genomes (Mulugeta et al. 2016). However, at least two 
Y-derived genes in the creeping vole are expressed in both 
sexes (Couger et al. 2021) and the genes and tissues evaluated 
in both studies are too limited to exclude the possibility of 
additional expression in females. Multi-tissue transcriptome 
data in these and other “shared Y” species will be essential to 
understanding the short term evolutionary response of female 
genomes to male-limited evolution. As to gaining insight into 
the processes that moved these systems from their ancestral to 
present day states, parameterization of mathematical models 
with species-specific empirical data (e.g. Saunders et al. 2022) 
is a promising approach.

Other avenues for future work
First, there is currently little support for sexual conflict as a 
primary driver of Y chromosomal transitions into the shared 
genome. However, many of the systems described above have 
increased opportunity for intralocus sexual conflict, in some 
cases potentiated by newly evolved asymmetries in the distri-
bution of sex chromosomes between the sexes. For example, 
in all systems with oocyte-promoting X* chromosomes, the Y 
chromosome spends part of its time in female environments. 
Assuming that the effects of previously male-limited genes on 
female fertility are neutral at best, does relaxed selection in 
females increase the frequency of Y haplotypes that reduce 
male fitness? Population genetic tests for Y-linked differentia-
tion between XY males and X*Y females would be a logical 
first step to addressing this question. Species with among pop-
ulation differences in the frequency of X* (e.g. M. minutoides, 
Veyrunes et al. 2013) provide natural experiments in which 
the effect of females on Y chromosome evolution could be 
calibrated to the frequency of X*.

Second, the X-linked mutations that promote ovarian de-
velopment in Y-bearing individuals have yet to be identified 
in any species. Just as in the origin of a new sex-determining 
locus on an autosome, local suppression of recombination 
between X* and the original X could facilitate the accumu-
lation of female-benefit alleles on X*. Intriguingly, the X* 
chromosomes of M. minutoides and M. schisticolor each 
carry a cytologically visible deletion and inversion relative to 
the ancestral X (Liu et al. 2001; Veyrunes et al. 2010). The 
inverted intervals likely hold the key to the oocyte-promoting 
effect of X* chromosomes in these species.

Master switch or tuning knobs?
Loss of Sry, the transcription factor that initiates testis 
development in most XY individuals, is convincingly 
demonstrated in just six species in our dataset: the mandarin 
vole (Lasiopodomys mandarinus), two species of Ryūkyū 
spiny rat (Tokudaia tokushimensis and T. osimensis), and 
three species of mole vole (E. tancrei, E. talpinus, and E. 
lutescens). In all three genera, long-term efforts to find an al-
ternative “master switch” for testis development eliminated 
several genes as probable candidates but found none that 
were (Just et al. 2007; Wang et al. 2009; Chen et al. 2011; 
Kuriowa et al. 2011). However, a recent landmark study in  
T. osimensis identified a small (17 kb) male-limited duplication 
on the same autosome as Sox9, the direct target of Sry in the 
testis-determining cascade (Terao et al. 2022). The duplicated 
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interval contains a cis-regulatory element that, when bound 
by a yet to be identified transcription factor, upregulates Sox9 
(Terao et al. 2022). Whereas there is more work to be done to 
map the complete molecular pathway of testis development 
in T. osimensis, the study is groundbreaking in identifying a 
new sex-determining locus, and therefore a newly arisen sex 
chromosome, in a mammal.

We will probably never know whether selection to limit sex-
ually antagonistic alleles to the sex they benefit drove recom-
bination suppression around Sry on the proto-Y chromosome 
of therian mammals. But the case of T. osimensis provides 
an opportunity to test the classic model for sex chromosome 
evolution (e.g. Fisher 1931; Charlesworth 1991) in real time. 
Given the increasing feasibility of producing chromosome-
level genome assemblies with long read sequencing, we an-
ticipate that discoveries of sex-limited intervals in other 
mammals with variant sex chromosomes will be forthcoming. 
The other Sry-less spiny rat, T. tokushimensis, is a particularly 
strong candidate. The fact that the new activator of testis de-
velopment in T. osimensis is a cis-regulatory element is yet 
another illustration of the power of small regulatory changes 
to shift evolutionary trajectories (e.g. Wray 2007; Wittkopp 
and Kalay 2012), in this case facilitating the loss of an entire 
chromosome.

Does nothing in sex chromosome evolution make 
sense except in light of conflict?
As evidence for sexual antagonism as the primary driver 
of suppressed recombination on sex chromosomes remains 
scarce (Wright et al. 2016), non-conflict hypotheses as to why 
sex chromosomes evolve have received increased attention. 
Neutral processes, such as drift, neutral divergence (Ironside 
2010; Ponnikas et al. 2018; Jeffries et al. 2021), and hetero-
zygote advantage (Ponnikas et al. 2018; Jay et al. 2022), have 
been proposed as avenues by which rearrangements capture 
sex-determining alleles and become fixed in a population. Sex-
specific selection, specifically where ecological factors act to 
influence sex-limited traits, can impact sex chromosome evo-
lution (Meisel 2022). Local adaptation can also shape what 
alleles get fixed in a population by favoring linkage through 
suppressed recombination (Guerrero and Kirkpatrick 2014; 
Meisel 2022). Recently, a non-conflict model driven by reg-
ulation of gene expression was developed, in which degen-
eration and dosage compensation coevolve, and proto-sex 
chromosomes diverge, shortly after the initial inversion event 
that captures a sex-determining allele (Lenormand et al. 
2020; Lenormand and Roze 2022). Subsequent sexually an-
tagonistic effects result from dosage compensation required 
by the heterogametic sex to regulate gene expression and not 
a sex-specific optimum as is invoked by the sexual conflict 
model of sex chromosome evolution.

The stage at which dosage compensation evolves is different 
between the contemporary sexual conflict model (Wright 
et al. 2016) and the regulatory divergence model of sex chro-
mosome evolution (Lenormand et al. 2020; Lenormand and 
Roze 2022). In a sexual conflict framework, dosage compen-
sation occurs after recombination has been suppressed and as 
a consequence of Y (or W) genes that have degenerated be-
cause of the lack of recombination between non-homologous 
sex chromosomes (Charlesworth 1978; Disteche 2012). In 
contrast, dosage compensation is the cause of suppressed re-
combination in the regulatory divergence model as regulatory 

regions continually evolve to balance the expression of Y- and 
X-linked alleles and maladaptive recombinants are selected 
against. Examining variant sex chromosome systems could 
provide insights into the early stages of sex chromosome 
evolution, particularly to determine whether or not dosage 
compensation plays a primary role in suppressing recombina-
tion between proto-sex chromosomes. In the Okinawa Island 
spiny rat, T. muenninki, the neo-X and neo-Y do not harbor 
any apparent chromosomal rearrangements between them, 
yet there is suppressed recombination (Murata et al. 2015, 
2016a). The lack of rearrangements could provide key insights 
into how regulatory evolution, particularly dosage compensa-
tion, could maintain suppressed recombination between the 
diverging sex chromosomes. In T. osimensis, a new autosomal 
sex-determining locus is exhibiting signs of sex-specific regu-
latory divergence (Terao et al. 2022). Given that cytogenetics 
shows that the autosome harboring the sex-specific region has 
yet to degenerate in the male-limited interval compared to its 
autosomal homolog (Koyabashi et al. 2007, 2008; Nakamura 
et al. 2007), it could be fruitful to compare levels of gene ex-
pression between this male-limited interval and its autosomal 
homolog. Reduced expression on the male-specific interval in 
the absence of degeneration would provide preliminary evi-
dence for the regulatory divergence model.

More broadly, the non-conflict regulatory evolution model 
predicts dosage compensation should evolve concurrently 
with low levels of degeneration in early stages of sex chro-
mosome evolution (Muyle et al. 2022). While studies that 
examine both regulatory evolution and coding sequence de-
generation in young sex chromosomes are currently lacking, 
there is evidence that gene-silencing can facilitate Y degener-
ation in Drosophila (Zhou and Bachtrog 2012) and that Y 
degeneration is a progressive process in some Rumex species 
with young sex chromosomes (Beaudry et al. 2017). Much 
of our understanding about the role of Y degeneration and 
dosage compensation in eutherian sex chromosomes comes 
from ancient systems (Charlesworth 1996; Disteche 2012), 
but focusing on the regulatory processes in variant eutherian 
sex chromosome systems provides the opportunity to observe 
a more recent slice of evolutionary time. Even with the op-
portunity to study sex chromosomes at early stages, it can 
be difficult to come to a single conclusion (e.g. Charlesworth 
et al. 2023; Fong et al. 2023). We look forward to seeing what 
the large number of variant sex chromosomes in mammals 
may add to our understanding of sex chromosome evolution.

Conclusions
Here, we emphasize the role of genomic and sexual conflict in 
the evolution of variant sex chromosome systems, with meiotic 
drive and sexual antagonism acting as the primary forces un-
derlying the emergence and fixation of variants. Mammalian 
sex chromosomes and sex-determining mechanisms clearly 
have the potential to vary dramatically, and the true extent of 
that variation is severely understudied outside of select taxa 
(e.g. Steinberg et al. 2014; Romanenko et al. 2020; Saunders 
et al. 2022). Several sex chromosome variants are popula-
tion specific, and further efforts to cytologically describe 
mammal species are necessary lest we risk missing variation 
assumed to be absent. Because the majority of variant systems 
we cataloged are characterized at the cytological level only, 
it is entirely possible that genomic evaluation of less-studied 
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systems will reveal sex-linked variation that was invisible to 
cytology. Indeed, the advent of long read genomics offers new 
opportunities to detect signs of conflict in centromeres and 
repetitive elements, and even to reveal new sex-determining 
mechanisms (e.g. Peichel et al. 2020; Couger et al. 2021). We 
have highlighted systems that would be ideal for collabora-
tive work between cytologists, genomicists, and theoreticians 
to unpack the evolution of sex chromosomes. Finally, having 
shown the extent to which norms and “rules” around mam-
malian sex chromosomes are bent and broken, we encourage 
consideration of more precise and inclusive language in 
describing these systems.

Supplementary material
Supplementary material is available at Journal of Heredity 
online.
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