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Abstract

Background

High-throughput sequencing technology has revolutionized both medical and biological

research by generating exceedingly large numbers of genetic variants. The resulting data-

sets share a number of common characteristics that might lead to poor generalization

capacity. Concerns include noise accumulated due to the large number of predictors, sparse

information regarding the p�n problem, and overfitting and model mis-identification result-

ing from spurious collinearity. Additionally, complex correlation patterns are present among

variables. As a consequence, reliable variable selection techniques play a pivotal role in pre-

dictive analysis, generalization capability, and robustness in clustering, as well as interpret-

ability of the derived models.

Methods and findings

K-dominating set, a parameterized graph-theoretic generalization model, was used to

model SNP (single nucleotide polymorphism) data as a similarity network and searched for

representative SNP variables. In particular, each SNP was represented as a vertex in the

graph, (dis)similarity measures such as correlation coefficients or pairwise linkage disequi-

librium were estimated to describe the relationship between each pair of SNPs; a pair of ver-

tices are adjacent, i.e. joined by an edge, if the pairwise similarity measure exceeds a user-

specified threshold. A minimum k-dominating set in the SNP graph was then made as the

smallest subset such that every SNP that is excluded from the subset has at least k neigh-

bors in the selected ones. The strength of k-dominating set selection in identifying indepen-

dent variables, and in culling representative variables that are highly correlated with others,

was demonstrated by a simulated dataset. The advantages of k-dominating set variable

selection were also illustrated in two applications: pedigree reconstruction using SNP pro-

files of 1,372 Douglas-fir trees, and species delineation for 226 grasshopper mouse
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samples. A C++ source code that implements SNP-SELECT and uses Gurobi optimization

solver for the k-dominating set variable selection is available (https://github.com/

transgenomicsosu/SNP-SELECT).

Introduction

With the rapid advancement of DNA sequencing technology, the volume and dimension of

biological and medical data have been increasing at an unprecedented rate. Accompanying

such high volume genetic data, the ‘curse of dimensionality’ has challenged the validity of sta-

tistical methods that do not scale to massive data. Statistical accuracy, model interpretability

and computational efficiency could be significantly impacted, especially when the number of

predictors is much greater than sample size [1]. For instance in high dimensional classification,

conventional classification rules using all variables perform no better than random guess for

small sample sizes [2]; and in omics data analysis where the ultimate goal is to identify a small

number of predictors (biomarkers, metabolites or genes), the correlation structure among pre-

dictors in the biology of the experiment often complicates biomarker identification [3].

Sources for these unsatisfied algorithmic performance could be the result of model noise accu-

mulation in high dimension, incidental correlation between residual errors and some predic-

tors, and the spurious collinearity that causes over-fitting and mis-identification of models [4–

6], making variable selection a practical solution for “large p small n” data [7, 8].

Magnitude and significance of linkage disequilibrium (LD) in the genome markedly varies

between populations [9, 10], causing unexpected multi-collinearity that leads to unstable esti-

mates of genetic parameters [11]. By reducing correlation in SNP predictors, Song et al. [12]

and others showed that with a selected subset, comparable predictability for complex traits like

grain yield and milk yield could be achieved [11, 13–16]. Results from Weigel et al. (2009) [17]

further suggest that, not only compatible prediction accuracy could be derived from a much

smaller, evenly spaced SNP subset, but the standard deviation of prediction accuracy reduced.

Crucial to both analyzing and interpreting high dimensional SNP datasets, significant effort

has been directed towards exploring variable selection processes by removing features that

might be either redundant or irrelevant to the problem, for better predictability, or computa-

tional efficiency and informativeness [18]. This effort includes the logistic regression method

[19], the penalized regression method [1, 20, 21], partial least squares regression (PLSR) [22],

sure independence screening strategy [23], multi-stage regression methods [24], sorted l-one

penalized estimation (SLOPE) via convex optimization [25], recurrent relative variable impor-

tance measure (r2VIM) [26], to name a few. However, these methods were designed to reduce

variables from a statistical perspective in order to ease the process of prediction or assist

GWAS (genome-wide association study) analysis, in which knowledge of phenotypic data is

required.

In the era of population genomics [27], many Fst-based genome-scan methods utilize large

datasets such as SNP chips or genome complexity reduction approaches like RAD tags [28]

and genotyping-by-sequencing (GBS) [29, 30], to estimate genetic parameters [31]. Identifying

adaptive evolution and candidate genomic regions under selection is increasingly feasible,

thanks to the development of sophisticated analytical tools for genome-scale polymorphism

data [32–35]. Given the data volume, most of these Bayesian approaches suffer from extended

computational time requirement [31] due to tedious numerical approximation procedures like

Markov chain Monte Carlo (MCMC) [34] or reverse jump (RJ)-MCMC [33]. Furthermore,
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accurate inference of demographic parameters such as effective population sizes, migration

rates, and divergence times between populations depends largely on the use of neutral marker

data [36–38]. In other words, SNP variable selection methods without the use of phenotypic

data are desirable for the purpose of reducing the bias caused by confounding variables, for

minimizing computational load, and for avoiding the potential problem of allele frequency

correlations in, for example, the Lewontin and Krakauer (LK) test [31, 39].

In this paper, we present SNP-SELECT, a variable selection algorithm based on a graph-

theory approach that uses generalized dominating sets for a large volume of SNP data without

the use of phenotypes. Application of graph theory to variable selection or data reduction has

been seen in many data mining applications [40–42]. Typically, this involves clustering the

data points into groups and using one point to represent each cluster, from which the network

clustering [43] procedure would derive a much smaller number of clusters, resulting in vari-

able selection. In our cases, data points (SNPs) are represented by vertices and an edge exists if

two data points (two SNPs) are similar or related in a certain way (i.e., in LD or in correlation).

We show the use of LD with an example; it is, however, important to note that the similarity

criterion used to construct the network model can be based on any relationship measurement.

The advantage and robustness of SNP-SELECT is also demonstrated with simulated datasets,

and with empirical datasets for a Douglas-fir (Pseudotsuga menziesii) breeding population and

for populations of three grasshopper mouse species (Onychomys spp.).

Material and methods

Generalized graph domination

Let G = (V,E) be a graph with vertex set V and edge set E�[V]2 (see [44] for basic graph theory

concepts and notations). The open neighborhood of a vertex v is the set N(v) of vertices adjacent

to vertex v. Note that v=2N(v) and the closed neighborhood of vertex v is denoted by N[v] = {v}[

N(v).

Definition 1 [45] Given a positive integer k and a graph G = (V,E), a subset of vertices D is

said to be k-dominating if |N(v)\D|�k for every vertex v=2D.

If D is a k-dominating set, then every vertex in V−D is said to be k-dominated. A minimum
k-dominating set is one of smallest cardinality in the graph and this cardinality is called the k-
domination number of the graph, denoted as γk(G). Note that the k-domination number of a

graph increases as parameter k increases and the model becomes more restrictive as more

neighbors are needed for each vertex outside the set to be k-dominated. Hence, every 2-domi-

nating set is also a 1-dominating set, but the converse is not true. Intuitively, as the parameter

k increases, we expect the k-dominating set to be a more reliable representation of the dataset

as each point has at least k similar points in the k-dominating set. Hence, the choice of k must

balance two conflicting criteria: solution fidelity (how well the dataset is represented) and

solution size (how many data points are selected). To illustrate, graphic presentations of k-

dominating sets for k = 1 and k = 2 were showed in Fig 1(A); and Fig 1(B) illuminated 1-domi-

nating set using neural network data for the nematode, C. elegans [46, 47]. Neurons are repre-

sented by vertices in this neural network and as long as two neurons communicate with each

other, an edge exists between them. The big dots in Fig 1(B) mark a 1-dominating set, and all

the small dots (vertices) have at least one neighbor of the same color, which identifies the

cluster.

Clustering a graph via k-dominating sets, especially with k = 1, is a popular technique in

telecommunication and wireless networks [48]. If D is a 1-dominating set, then for each vertex

v2D the closed neighborhood N[v] forms a cluster that altogether cover V. Since by definition,

every vertex not in the 1-dominating set has a neighbor in it and hence, is assigned to at least
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one cluster. Since the problem of finding a minimum k-dominating set is NP-hard [49], heu-

ristic approaches and approximation algorithms have been proposed to find a small k-domi-

nating set in the given graph [50]. However, the approach employed in this article to solve this

combinatorial optimization problem was to formulate it as an integer program [51], imple-

ment and solve it using a state-of-the-art solver that employs a branch-and-cut algorithm with

built-in primal heuristics and other presolve reductions among others. Given a positive integer

k and a graph G = (V,E), the problem of finding a minimum k-dominating set can be formu-

lated as the following linear integer program in binary variables.

gkðGÞ ¼ min
X

i2V

xi

subject to:

X

j2NðiÞ

xj � kð1 � xiÞ; 8i 2 V

xi 2 f0; 1g; 8i 2 V

In any feasible solution x to this formulation, the binary variable xi = 1 if and only if vertex i
is included in the k-dominating set D, which is given by D = {i2V: xi = 1}. The constraints

ensure that if a vertex i is excluded from the k-dominating set D, i.e. xi = 0, at least k of its

neighbors must be included.

Fig 1. (a) Illustration of 1-dominating set and 2-dominating set; (b) Illustration of 1-dominating set using the neural network data of C. elegans [46, 47]: the big nodes

mark a 1-dominating set, and all the small nodes have at least 1 same color neighbor.

https://doi.org/10.1371/journal.pone.0203242.g001
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Pairwise relationship between SNPs

The pairwise relationship (similarity or distance) between SNP variables primarily determines

the structure of the graph G, and different ways for quantifying the pairwise relationship can

influence the structure of the graph G, especially the sets of edges. Currently, many methods

exist to measure the pairwise relationship of SNPs, for example, Hamming distance [52],

mutual information [53, 54], allele sharing index [55, 56], and linkage disequilibrium (LD)

[57–59], to name a few. We chose to use the frequently used LD approach to describe the pair-

wise relationship between SNP variables in this study, although the proposed approach contin-

ues to work with other similarity measures as well. The square of correlation coefficients (r2)

for SNP variables were calculated to represent the values in the LD matrix (refer to [60] for the

details). Since the gametic phase of haplotype frequencies for each pair of SNPs are unknown,

the expectation maximization algorithm [61] was applied to infer the haplotype frequencies in

the LD calculation.

With a user-defined threshold (λ), an edge exists only if the pairwise relationship between

the two SNPs (vertices) is greater than λ. Thus, for any given pairwise relationship measure-

ment, as λ increases, the number of edges in the graph decreases, and consequently the num-

ber of isolated (independent) vertices in a graph can increases. For any positive integer k, an

isolated vertex in the graph cannot be k-dominated by any other vertex, and must be included

in any k-dominating set. In fact, this observation holds more generally for any vertex with

fewer than k neighbors in the graph.

Scheme of SNP-SELECT

The details of SNP-SELECT are summarized as follows:

Step 1: Construct a graph model G = (V,E): Let V be the set of all SNPs and E is initially empty;

Step 2: Calculate linkage disequilibrium wij for each pair of SNPs i,j2V;

Step 3: An edge between SNPs i and j is created if wij>λ;

Step 4: Identify isolated SNPs I {i2V: N(i) = ;};

Step 5: Find a minimum k-dominating set in G−I.

All experiments/analyses reported in this article were conducted on a 64-bit Linux compute

node of a high performance computing cluster with 96GB RAM and Intel Xeon E5620

2.40GHz processor. The algorithm was implemented using C++, and the integer programming

formulation for the minimum k-dominating set problem was solved using the GurobiTM opti-

mizer 6.0 with default settings [62]. Given a running time limit, GurobiTM either returned an

optimal solution, or a feasible solution with a gap to a lower bound on the optimal solution.

Experiments/analyses reported in this study were performed with a 1-hour running time limit

for GurobiTM. The solution returned by GurobiTM was used to identify the representative sub-

set of the original dataset.

In our preliminary analyses, we found that when λ is small, e.g. λ<0.2, the graph model

tends to be very dense with an extremely large number of edges. When several thousands of

SNPs are involved, such graphs can exceed memory limits during computation and result in a

memory crash, before a feasible solution can be derived. Also, very small thresholds may not

necessarily be realistic to capture similarities between SNPs. To address this issue, a stepwise

search was implemented in SNP-SELECT for large SNP datasets as follows:

Step 1: Construct a threshold set T = {λ1,λ2,. . .,λL}, where λ1>λ2>� � �>λL, and λL is the desired

threshold, λL λ, and λh−λh+1 equals a predefined step; Let h = 1, and V1 be the set of all SNPs;

Generalized graph domination for SNP variable selection
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Step 2: Construct Gh on Vh using λh;

Step 3: Identify isolated SNPs Ih {i2Vh: N(i) = ;};

Step 4: Find a minimum (or a small) k-dominating set Sh in Gh−Ih, let Yh Sh[Ih;

Step 5: If h = L, return Yh, STOP; else Vh+1 Yh, h h+1, go to Step 2.

In brief, this step-wise search of SNP-SELECT first finds a minimum k-dominating set Y1

(or the best solution available) on a graph model based on a larger threshold. Then the thresh-

old is lowered to focus on the graph induced by Y1. The data size of current step is the output

of previous step. This process is repeated until a desired low threshold is reached. The feature

selection problem of large datasets is thus solved by iteratively reducing the value of threshold.

Simulation studies

To demonstrate the capacity of the k-dominating set algorithm to identify independent vari-

ables, and to select proxy variables among highly correlated ones, a simulated dataset that

included 10 synthetic undirected networks with n = 1000 vertices were used to represent SNPs.

In this synthetic network dataset, the pairwise relationships between SNPs (vertices), the

weighted edge (wij) between each pair of vertices (i,j), were generated using a uniform distribu-

tion over [0,1]. The randomly chosen edge weights, denoted by al, where l 2 1; 2; . . . ; n
2 � n
2

� �
,

and without loss of generality assumed to be in increasing order, were assigned to edges using

the following algorithm such that wi,j<wi,j+1 and wi,j<wi+1,j.

Step 1: Initialize l 1;

Step 2: for i = 1 to n−1

Step 3: for j = i+1 to n

Step 3: wij al;

Step 4: l l+1;

Step 5: end-for

Step 6: end-for

A correlative relationship among SNP variables, or linkage disequilibrium (LD), is the non-

random association between SNP alleles. The distribution of these relationships among SNPs

in a given genome tends to be greater when SNPs are closely located; this correlation dimin-

ishes quickly as genomic distance between SNPs gets larger, e.g. LD decay [63]. As a result, the

distribution of correlative relationships among SNPs is a mixture of a small number of highly

correlated SNPs with a large number of SNPs in low correlations. Assigning edge weights in

increasing order is a simple way to guarantee that only part of the vertices has low edge weights

close to 0, which can be used to define the independent variables. Meanwhile, we can also iden-

tify a subset of vertices with edge weights higher than a predefined threshold within this set,

which could be used to define the independent variables and highly correlated variables.

A vertex i that has all neighbors with wij<0.1, where j2V and j6¼i, was defined as an inde-

pendent variable. The subset generated by SNP-SELECT has to include all the independent

variables to confirm that the k-dominating set based approach is able to identify independent

variables. Highly correlated variables were defined as a subset (P) of the variables where P�V,

and the edge weights (wP
ij) within this subset are greater than a predefined threshold. In this

simulation, we selected 0.8, 0.6, 0.4, and 0.3 as the predefined thresholds for the purpose of

Generalized graph domination for SNP variable selection
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illustrating the capability of the proposed approach to select the highly correlated variables. If

SNP-SELECT includes at least one of the predefined highly correlated variables, the perfor-

mance of the algorithm in selecting proxy variables among the highly correlated ones is con-

sidered fulfilled.

Douglas-fir breeding populations

The Douglas-fir breeding population was established by the Ministry of Forests, Lands and

Natural Resource of British Columbia, Canada in 1975 and consists of 165 full-sib families

generated from structured paired-matings among 54 parents. The 1,372 individual trees used

in this study consist of a subset of the full population and contains 37 full-sib families from 38

parents (see [64], for complete details). SNP genotypes for these 1,372 trees were generated

using exome capture [65], resulting in 106,099 SNPs with missing ratio threshold less than

25% and minimum minor allele frequency (MAF) greater than 5% which comprises the ‘origi-

nal’ data set.

The average numerator relationship matrix (A-matrix) of the DF dataset is known due to

the structured pedigree, and was used as a baseline for comparison. We calculated the genomic

estimated relatedness (G-matrix) using R package “rrBLUP” [66] using the mean imputation

option on the original SNP dataset, as well as the five k-dominating SNP subsets. The compari-

son of the pedigree-based relatedness (A-matrix) elements with those of the G-matrices of the

selected SNP subsets was performed to validate that SNP-SELECT is able to minimize the devi-

ation of diagonal elements while obtaining comparable genetic covariance among individuals

(off-diagonal elements).

Grasshopper mouse SNP data

Grasshopper mouse (genus, Onychomys) are cricetid rodents that inhabit prairies, deserts and

desert grasslands throughout the western United States, northern Mexico, and south-central

Canada [67]. Whereas O. leucogaster is readily distinguished based on body size, the two

smaller species, O. arenicola and O. torridus, are morphologically cryptic and were treated as a

single species until 1979 [68]. The SNP dataset analyzed here was generated using genotyping-

by-sequencing, GBS [29], as part of a study designed to test for evidence of hybridization at a

site in southwestern New Mexico where all three species come into contact [69], and at other

sites in New Mexico and Arizona where O. leucogaster is sympatric with O. arenicola and O.

torridus, respectively. SNPs were called using a reference-free SNP discovery protocol

(UNEAK pipeline [70]), and filtered with minor allele frequency greater than 5% and missing

ratio less than 10%.

Results

Simulation studies

When the SNP-SELECT algorithm was applied to the synthetic network with k 2 {1,2,3,4,5},

all the k-dominating sets found included the predefined independent variables. The perfor-

mance of the k-dominating set model in the selection of proxy variables is presented in Fig 2,

with the predefined highly correlated variable thresholds λ2{0.8,0.7,0.6,0.5,0.4,0.3}. As shown

in Fig 2(A), the definition of highly correlated variables was strict (wP
ij > 0:8); under this con-

dition of few, highly connected variables, the use of larger values of either k or λ was encour-

aged. Also shown in Fig 2(B), 2(C) and 2(D), when relationships between variables are a

mixture of high and low correlations, our results suggest the use of smaller values in k and λ to
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capture all relationships. By varying on k and λ, we demonstrate the flexibility and strength of

SNP-SELECT in choosing proxy variables from highly correlated variables.

Pedigree recovery for Douglas-fir breeding populations

The SNP-SELECT algorithm was applied to select the influential SNPs to reconstruct the

known pedigree for a Douglas-fir (DF) breeding population. Four k-dominating sets (DF107,

DF105, DF103, DF102) with k = 1, and λ2{0.7,0.5,0.3,0.2} were generated. Among the four

1-dominating sets, DF103 has the best performance as shown in Table 1. To further investigate

the impact of k on variable selection, another k-dominating set, DF203, with k = 2 and λ = 0.3

was generated to compare with DF103. The number of selected SNPs in DF107, DF105,

DF103, DF102 and DF203 is 80,735, 67,062, 51,415, 41,539, and 68,188, respectively.

Without variable selection, original SNP data generated an average of 18% discrepancy on

the diagonal elements. The performance of the five k-dominating subsets was showed in the

reduced diagonal differences from the genomic relationship matrix (G-matrix) to the tradi-

tional pedigree-based average numerator relationship matrix (A-matrix) (Table 1). Comparing

the five k-dominating sets indicated that the DF103 subset performed best on pedigree reco,

especially for the diagonal pedigree information recovery. Fig 3 further illustrates the efficiency

of the DF103 subset on pedigree reconstruction, and indicates that the G-matrix generated

from the DF103 subset was closer to the known A-matrix as compared with the original data-

set’s G-matrix. Additionally, we randomly selected 10 subsets with the same SNP number as

Fig 2. The capability of k-dominating set in selecting proxy variables among highly correlated variables. Ten synthetic undirected networks with n = 1,000 vertices

(V) were simulated. (a) highly correlated variables defined as wP
ij > 0:8; (b) highly correlated variables defined as wP

ij > 0:6; (c) highly correlated variables defined as

wP
ij > 0:4; (d) highly correlated variables defined as wP

ij > 0:3.

https://doi.org/10.1371/journal.pone.0203242.g002
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DF103 from the original dataset and used the average results of these 10 subsets to represent

the performance of the randomly selected subset. The results indicated that all five k-dominat-

ing sets outperformed the randomly selected subset (Table 1).

The effectiveness of SNP-SELECT was also examined by the conventional approach that fil-

ters for SNP variables by pairwise correlation coefficients, as well as the LRTag algorithm that

applies minimum set covering for SNP selection [71]. The discrepancy between A- and G-
matrices resulted from using correlation coefficient of 0.3 and λ = 0.3 was listed in Table 1 as

COR03 and LRTag03, for pairwise correlation coefficient method and LRTag algorithm,

respectively. Among all tests, the DF103 from SNP-SELECT remained the best SNP subset for

estimating genetic relationship of Douglas-fir breeding population. Consider computing time

requirement, when values of distance or pair-wise linkage disequilibria were pre-computed,

SNP variable selection for SNP-SELECT could be complete in 8–10 minutes, while LRTag

required about 18 hours for the same datasets.

Clustering analysis for grasshopper mouse populations

To investigate parameters influencing population genetics of grasshopper mouse populations,

85,812 SNPs were used to genotype 226 samples representing three species: O. arenicola
(n = 76), O. leucogaster (n = 67), and O. torridus (n = 83), collected at 12 geographic locations

(Table 2). The dataset was pre-filtered based on a maximum of 10% missing data, and mini-

mum MAF (minor allele frequency) of 5%. The SNP-SELECT was applied to generate three

SNP subsets (MICE103, MICE105 and MICE107) with k = 1 and λ2{0.3,0.5,0.7}, respectively;

the number of informative SNPs retained in MICE103, MICE105 and MICE107 was 2,144,

11,014, and 22,355, respectively. The missing data in the original dataset and the three k-domi-

nating sets was imputed with the most frequent genotype. Before the geographic origin analy-

sis, we split the 226 samples into 3 groups based on species identity. There were 5 sampling

locations in each species group (Table 2).

The performance of the three k-dominating sets’ ability to predict the geographic origin of

samples within each species was first evaluated using the k-means clustering approach in R

[72]. Clustering was initiated with k = 5, random seed at 20 and nstart = 100, where nstart

specifies the initial configurations, and the algorithm will report on the best one [73, 74]. The

Adjusted Rand Index (ARI), a measure of agreement between clustering results and external

criteria [75, 76], was used to evaluate the clustering results. As shown in Table 3, the clustering

results for the largest SNP subset, MICE107, had the same performance as the original data of

Table 1. The average difference of the upper triangle and the diagonal between pedigree-based relatedness (A-matrix) and genomic estimated relatedness (G-
matrix). The best selected-subset for pedigree reconstruction (subset DF103) is highlighted. λ is linkage disequilibrium estimate.

k λ Num. of

SNP

Ave. difference

upper triangle

Ave. difference

diagonal

Original Data - - 106,099 0.034353 0.180374

DF107 1 0.7 80,735 0.034240 0.103673

DF105 1 0.5 67,062 0.034139 0.055994

DF103 1 0.3 51,415 0.034018 0.019769

DF102 1 0.2 41,539 0.034249 0.123494

DF203 2 0.3 68,188 0.034180 0.123950

Random subset - - 51,415 0.034498 0.180419

COR03 - 0.3 39,768 0.034774 0.234326

LRTag03 - 0.3 51,022 0.034292 0.135324

https://doi.org/10.1371/journal.pone.0203242.t001
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Fig 3. (a) Heatmap of the absolute difference between pedigree-based relatedness (A-matrix) and genomic estimated

relatedness (G-matrix) generated from original data; (b) Heatmap of the absolute difference between pedigree-based

relatedness (A-matrix) and genomic estimated relatedness (G-matrix) generated from DF103 subset. The color of Fig 3

(B) is lighter than Fig 3(A). The lighter the color, the closer the relationship between A- and G-matrices of Douglas-fir

breeding population.

https://doi.org/10.1371/journal.pone.0203242.g003

Generalized graph domination for SNP variable selection

PLOS ONE | https://doi.org/10.1371/journal.pone.0203242 January 24, 2019 10 / 18

https://doi.org/10.1371/journal.pone.0203242.g003
https://doi.org/10.1371/journal.pone.0203242


85,812 SNPs in recovering the geographic origin of O. arenicola and O. torridus samples; how-

ever, MICE107 subset outperformed the original SNP data in recovering the geographic origin

of O. leucogaster samples. Moreover, the clusters resulting from MICE105 and MICE103

exhibited larger ARI values than those from the original SNP data, indicative of a greater

agreement and reduced errors in the clustering reached by SNP-SELECT variable selection.

Overall, the MICE105 SNP subset (11,014 SNPs) demonstrated the greatest agreement among

all selected subsets (Table 3).

To confirm that the performance of SNP-SELECT was not the result of a specific clustering

algorithm, the partitioning around medoids (PAM) algorithm [77] with k = 5 (random

seed = 20) was performed using samples’ dissimilarity matrix of each species. To describe the

dissimilarity matrix, we first define the G-matrix as

g11 . . . g1n

..

.
. . . ..

.

gn1 . . . gnn

2

6
6
4

3

7
7
5. Then the dissimilarity

matrix is defined as

1 � jg11j . . . 1 � jg1nj

..

.
. . . ..

.

1 � jgn1j . . . 1 � jgnnj

2

6
6
4

3

7
7
5. In Table 3, clusters resulting from the PAM

algorithm also demonstrated that the selected subsets perform better than the original data in

predicting actual sampling localities.

Table 2. Geographic location of grasshopper mouse (Onychomys) samples.

Species Site Name (Sample Size)

O. arenicola Animas/Rodeo, NM (20);

Pancho Villa, Chihuahua, Mex (7);

Organ Mountains, NM (27);

Sevilleta National Wildlife Refuge, NM (14);

Hidalgo del Parral, Chihuahua, Mex (8).

O. leucogaster Petrified Forest, AZ (13);

Animas/Rodeo, NM (11);

Sevilleta National Wildlife Refuge, NM (14);

Felt, OK (19);

Garden City, KS (10).

O. torridus Lone Pine, CA (11);

Carefree, AZ (8);

Santa Rita Experimental Range, AZ (19);

Animas/Rodeo, NM (28);

Chiricahua Mountains, AZ (17).

https://doi.org/10.1371/journal.pone.0203242.t002

Table 3. The adjusted rand index (ARI) shows the agreement between the computed clusters using k-means clustering algorithm and partitioning around medoids

(PAM) algorithm with k = 5, using the original grasshopper mouse SNP data set and the k-dominating subsets. ARI values listed below show the agreement measure-

ment between original sample locations and clustering results.

Method Dataset SNP Number O. arenicola O. leucogaster O. torridus
Original data 85,812 0.3868 0.5981 0.5692

k-means MICE107 22,355 0.3868 0.7158 0.5692

MICE105 11,014 0.5256 0.7158 0.6003

MICE103 2,144 0.3963 0.7158 0.6003

Original data 85,812 0.0706 0.2229 0.2244

PAM MICE107 22,355 0.0513 0.3852 0.1812

MICE105 11,014 0.1016 0.3509 0.2445

MICE103 2,144 0.1172 0.2902 0.2793

https://doi.org/10.1371/journal.pone.0203242.t003
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Discussion

Owing to technological advancement in DNA sequencing methods, life scientists are grappling

with exceedingly large data sets [78]. The most obvious challenge is the large amount of geno-

mic variation that needs to be processed and quantified in a very short time period [79].

Although various data techniques have been adopted, the resulting data sets have several char-

acteristics that make downstream analyses challenging [80]. The common ones are: the num-

ber of variables is often much larger than the number of individuals, and data sets are usually

sparse regarding relevant information, i.e. only a small subset of variables is associated with the

phenotypic variation [81].

In genetic analyses using high dimensional data sets where there are more parameters than

observations, penalized regression techniques are often required to ensure stable estimates [82,

83]. The estimates of SNP marker effects are strongly affected by collinearity between predictors

through a “grouping effect”- groups of variables highly correlated with other groups (of vari-

ables) sporadically [84]. Such multicollinearity would further confound gene expression values

obtained from RNAseq or determination of significance of SNP causality in genome-wide asso-

ciation (GWAS) or genomic selection (GS) studies [85–87]. As a result, multiple-step GWAS

and GS analysis that includes SNP variable selection has been explored [26, 88–91]. While adop-

tion of these methods might be an advantage when seeking functional variants associated with

traits of interest, these fitness-associated SNP variables would bias inferences of gene flow,

migration or dispersal [37, 92], and estimates of relatedness and inbreeding depression [93].

Without the dependency on phenotypes, SNP variable selection methods currently focus

on pairwise correlations between variables (e.g. [94]). In principle, SNP variables are selected if

the absolute value of a pairwise correlation (|corr(i,j)|) is less than a predefined threshold λ; or

if |corr(i,j)| is no less than the given threshold, only the second variable will be selected (e.g. if |

corr(i,j)|�λ, SNP j will be selected). Here, we demonstrate the superior performance of the

proposed k-dominating set variable selection over the conventional method of pairwise corre-

lation coefficients (Table 1, COR03). As shown in Fig 3, diagonal values, indicative of the

errors in estimating individuals’ genomic relationship based on markers, were minimized

using SNP-SELECT. The pairwise estimates of genomic relationships (off-diagonal elements)

were, however, mostly preserved (Table 1), suggesting that both the hidden and historical

relatedness among individuals could still be recovered by the set of SNP variables selected by

SNP-SELECT.

The use of genomic markers to uncover hidden relationships and potential pedigree in

open-pollinated progeny has been effective in tree breeding programs [95, 96]. Such pedigree

reconstruction is a preferred method to determine the genealogical relationship among groups

of related individuals, leading to improved estimation of genetic parameters [97–99]. To maxi-

mize the advantage of using dense genomic markers, VanRaden [100] derived estimates of

marker-based relationships between pairs of individuals as a genomic relationship matrix (G-

matrix), which can be used as a substitute for the traditional pedigree-based average numera-

tor relationship matrix (A- matrix) in Henderson’s animal model [101–103]. Also, combining

the A-matrix and the G-matrix into a single genetic relationship matrix (H-matrix) has proven

to be an effective approach to improve the relationship coefficients for better genetic parame-

ter estimation [104, 105] and marker effect estimation [106], and to leverage extra phenotypic

information from the non-genotyped individuals [103]. To ensure improved accuracy in such

single-step methods, the G- and A-matrices should be compatible [107], and diagonal elements

in the G-matrix need to be consistent with the A-matrix diagonal elements; therefore rescaling

A- and G-matrices would reflect the mean difference between these matrices [108], a context

in which using SNP markers selected by SNP-SELECT could be considerably beneficial.
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Conclusions

The k-dominating set model provides a flexible and effective method for selecting informative

SNPs; a C++ source code (SNP-SELECT) that uses GurobiTM Optimization solver is also

released with the manuscript. This approach is scalable through the use of integer program-

ming solvers and graph preprocessing, and can be extended to other genomic applications.

Using pedigree reconstruction and cluster analysis, the capacity of SNP-SELECT was dem-

onstrated for solving the variable selection conundrum of large datasets without any significant

runtime considerations. Furthermore, SNP-SELECT does not depend on the use of LD to

define threshold for edges; other similarity/distance measure would broaden its applicability

beyond breeding science and ecological genetics. Future work on the algorithmic aspects of

this approach could focus on the development of graph and model decomposition techniques,

as well as preprocessing techniques to improve scalability in practice.
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